An example for the holomorphic sectional curvature of the Bergman metric
Annales Polonici Mathematici, Tome 98 (2010) no. 2, pp. 147-167
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the behaviour of the holomorphic sectional curvature (or Gaussian curvature) of the Bergman metric of planar annuli. The results are then utilized to construct a domain for which the curvature is divergent at one of its boundary points and moreover the upper limit of the curvature at that point is maximal possible, equal to 2, whereas the lower limit is
$-\infty $.
Keywords:
study behaviour holomorphic sectional curvature gaussian curvature bergman metric planar annuli results utilized construct domain which curvature divergent its boundary points moreover upper limit curvature point maximal possible equal whereas lower limit infty
Affiliations des auteurs :
Żywomir Dinew 1
@article{10_4064_ap98_2_4,
author = {\.Zywomir Dinew},
title = {An example for the holomorphic sectional curvature of the {Bergman} metric},
journal = {Annales Polonici Mathematici},
pages = {147--167},
publisher = {mathdoc},
volume = {98},
number = {2},
year = {2010},
doi = {10.4064/ap98-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-2-4/}
}
TY - JOUR AU - Żywomir Dinew TI - An example for the holomorphic sectional curvature of the Bergman metric JO - Annales Polonici Mathematici PY - 2010 SP - 147 EP - 167 VL - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap98-2-4/ DO - 10.4064/ap98-2-4 LA - en ID - 10_4064_ap98_2_4 ER -
Żywomir Dinew. An example for the holomorphic sectional curvature of the Bergman metric. Annales Polonici Mathematici, Tome 98 (2010) no. 2, pp. 147-167. doi: 10.4064/ap98-2-4
Cité par Sources :