A stochastic symbiosis model with degenerate diffusion process
Annales Polonici Mathematici, Tome 98 (2010) no. 2, pp. 111-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a model of symbiosis given by a system of stochastic differential equations. We consider a situation when the same factor influences both populations or only one population is stochastically perturbed. We analyse the long-time behaviour of the solutions and prove the asymptoptic stability of the system.
DOI : 10.4064/ap98-2-2
Keywords: present model symbiosis given system stochastic differential equations consider situation factor influences populations only population stochastically perturbed analyse long time behaviour solutions prove asymptoptic stability system

Urszula Skwara 1

1 Institute of Mathematics Maria Curie-Skłodowska University Pl. M. Curie-Skłodowskiej 1 20-031 Lublin, Poland
@article{10_4064_ap98_2_2,
     author = {Urszula Skwara},
     title = {A stochastic symbiosis model with
 degenerate diffusion process},
     journal = {Annales Polonici Mathematici},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2010},
     doi = {10.4064/ap98-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-2-2/}
}
TY  - JOUR
AU  - Urszula Skwara
TI  - A stochastic symbiosis model with
 degenerate diffusion process
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 111
EP  - 128
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap98-2-2/
DO  - 10.4064/ap98-2-2
LA  - en
ID  - 10_4064_ap98_2_2
ER  - 
%0 Journal Article
%A Urszula Skwara
%T A stochastic symbiosis model with
 degenerate diffusion process
%J Annales Polonici Mathematici
%D 2010
%P 111-128
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap98-2-2/
%R 10.4064/ap98-2-2
%G en
%F 10_4064_ap98_2_2
Urszula Skwara. A stochastic symbiosis model with
 degenerate diffusion process. Annales Polonici Mathematici, Tome 98 (2010) no. 2, pp. 111-128. doi : 10.4064/ap98-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap98-2-2/

Cité par Sources :