An intermediate value theorem in ordered Banach spaces
Annales Polonici Mathematici, Tome 98 (2010) no. 1, pp. 63-69.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.
DOI : 10.4064/ap98-1-4
Keywords: prove intermediate value theorem certain quasimonotone increasing functions ordered banach spaces under assumption each nonempty order bounded chain has supremum

Gerd Herzog 1

1 Institut für Analysis Universität Karlsruhe D-76128 Karlsruhe, Germany
@article{10_4064_ap98_1_4,
     author = {Gerd Herzog},
     title = {An intermediate value theorem in ordered {Banach} spaces},
     journal = {Annales Polonici Mathematici},
     pages = {63--69},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2010},
     doi = {10.4064/ap98-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-1-4/}
}
TY  - JOUR
AU  - Gerd Herzog
TI  - An intermediate value theorem in ordered Banach spaces
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 63
EP  - 69
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap98-1-4/
DO  - 10.4064/ap98-1-4
LA  - en
ID  - 10_4064_ap98_1_4
ER  - 
%0 Journal Article
%A Gerd Herzog
%T An intermediate value theorem in ordered Banach spaces
%J Annales Polonici Mathematici
%D 2010
%P 63-69
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap98-1-4/
%R 10.4064/ap98-1-4
%G en
%F 10_4064_ap98_1_4
Gerd Herzog. An intermediate value theorem in ordered Banach spaces. Annales Polonici Mathematici, Tome 98 (2010) no. 1, pp. 63-69. doi : 10.4064/ap98-1-4. http://geodesic.mathdoc.fr/articles/10.4064/ap98-1-4/

Cité par Sources :