An intermediate value theorem in ordered Banach spaces
Annales Polonici Mathematici, Tome 98 (2010) no. 1, pp. 63-69
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.
Keywords:
prove intermediate value theorem certain quasimonotone increasing functions ordered banach spaces under assumption each nonempty order bounded chain has supremum
Affiliations des auteurs :
Gerd Herzog 1
@article{10_4064_ap98_1_4,
author = {Gerd Herzog},
title = {An intermediate value theorem in ordered {Banach} spaces},
journal = {Annales Polonici Mathematici},
pages = {63--69},
year = {2010},
volume = {98},
number = {1},
doi = {10.4064/ap98-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-1-4/}
}
Gerd Herzog. An intermediate value theorem in ordered Banach spaces. Annales Polonici Mathematici, Tome 98 (2010) no. 1, pp. 63-69. doi: 10.4064/ap98-1-4
Cité par Sources :