An intermediate value theorem in ordered Banach spaces
Annales Polonici Mathematici, Tome 98 (2010) no. 1, pp. 63-69
We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.
Keywords:
prove intermediate value theorem certain quasimonotone increasing functions ordered banach spaces under assumption each nonempty order bounded chain has supremum
Affiliations des auteurs :
Gerd Herzog  1
@article{10_4064_ap98_1_4,
author = {Gerd Herzog},
title = {An intermediate value theorem in ordered {Banach} spaces},
journal = {Annales Polonici Mathematici},
pages = {63--69},
year = {2010},
volume = {98},
number = {1},
doi = {10.4064/ap98-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-1-4/}
}
Gerd Herzog. An intermediate value theorem in ordered Banach spaces. Annales Polonici Mathematici, Tome 98 (2010) no. 1, pp. 63-69. doi: 10.4064/ap98-1-4
Cité par Sources :