The hyper-order of solutions of certain linear complex differential equations
Annales Polonici Mathematici, Tome 97 (2010) no. 3, pp. 273-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove some theorems on the hyper-order of solutions of the equation $f^{(k)}-e^{Q}f=a(1-e^{Q})$, where $Q$ is an entire function, which is a polynomial or not, and $a$ is an entire function whose order can be larger than 1. We improve some results by J. Wang and X. M. Li.
DOI : 10.4064/ap97-3-6
Keywords: prove theorems hyper order solutions equation e e where entire function which polynomial entire function whose order larger improve results wang

Guowei Zhang 1 ; Ang Chen 1

1 Department of Mathematics Shandong University Jinan, Shandong 250100, P.R. China
@article{10_4064_ap97_3_6,
     author = {Guowei Zhang and Ang Chen},
     title = {The hyper-order of solutions of certain linear complex differential equations},
     journal = {Annales Polonici Mathematici},
     pages = {273--284},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2010},
     doi = {10.4064/ap97-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-3-6/}
}
TY  - JOUR
AU  - Guowei Zhang
AU  - Ang Chen
TI  - The hyper-order of solutions of certain linear complex differential equations
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 273
EP  - 284
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap97-3-6/
DO  - 10.4064/ap97-3-6
LA  - en
ID  - 10_4064_ap97_3_6
ER  - 
%0 Journal Article
%A Guowei Zhang
%A Ang Chen
%T The hyper-order of solutions of certain linear complex differential equations
%J Annales Polonici Mathematici
%D 2010
%P 273-284
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap97-3-6/
%R 10.4064/ap97-3-6
%G en
%F 10_4064_ap97_3_6
Guowei Zhang; Ang Chen. The hyper-order of solutions of certain linear complex differential equations. Annales Polonici Mathematici, Tome 97 (2010) no. 3, pp. 273-284. doi : 10.4064/ap97-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap97-3-6/

Cité par Sources :