Bundle functors with the point property
which admit prolongation of connections
Annales Polonici Mathematici, Tome 97 (2010) no. 3, pp. 253-256
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $F:\mathcal M f\to\mathcal F\cal M$ be a bundle functor with the point property
$F(pt)=pt$, where $pt$ is a one-point manifold. We prove that $F$ is product
preserving if and only if for any $m$ and $n$ there is an
$\cal F\cal M_{m,n}$-canonical
construction $D$ of general connections $D({\mit\Gamma})$ on $Fp:FY\to FM$ from general
connections $\mit\Gamma$ on fibred manifolds $p:Y\to M$.
Keywords:
mathcal mathcal cal bundle functor point property where one point manifold prove product preserving only there cal cal canonical construction general connections mit gamma to general connections mit gamma fibred manifolds
Affiliations des auteurs :
W. M. Mikulski 1
@article{10_4064_ap97_3_4,
author = {W. M. Mikulski},
title = {Bundle functors with the point property
which admit prolongation of connections},
journal = {Annales Polonici Mathematici},
pages = {253--256},
publisher = {mathdoc},
volume = {97},
number = {3},
year = {2010},
doi = {10.4064/ap97-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-3-4/}
}
TY - JOUR AU - W. M. Mikulski TI - Bundle functors with the point property which admit prolongation of connections JO - Annales Polonici Mathematici PY - 2010 SP - 253 EP - 256 VL - 97 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap97-3-4/ DO - 10.4064/ap97-3-4 LA - en ID - 10_4064_ap97_3_4 ER -
W. M. Mikulski. Bundle functors with the point property which admit prolongation of connections. Annales Polonici Mathematici, Tome 97 (2010) no. 3, pp. 253-256. doi: 10.4064/ap97-3-4
Cité par Sources :