Algebraic approximation of analytic sets definable in an o-minimal structure
Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 185-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K,R$ be an algebraically closed field (of characteristic zero) and a real closed field respectively with $K=R(\sqrt{-1}).$ We show that every $K$-analytic set definable in an o-minimal expansion of $R$ can be locally approximated by a sequence of $K$-Nash sets.
DOI : 10.4064/ap97-2-7
Keywords: algebraically closed field characteristic zero real closed field respectively sqrt every k analytic set definable o minimal expansion locally approximated sequence k nash sets

Marcin Bilski 1 ; Kamil Rusek 1

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap97_2_7,
     author = {Marcin Bilski and Kamil Rusek},
     title = {Algebraic approximation of analytic
 sets definable in an o-minimal structure},
     journal = {Annales Polonici Mathematici},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2010},
     doi = {10.4064/ap97-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/}
}
TY  - JOUR
AU  - Marcin Bilski
AU  - Kamil Rusek
TI  - Algebraic approximation of analytic
 sets definable in an o-minimal structure
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 185
EP  - 200
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/
DO  - 10.4064/ap97-2-7
LA  - en
ID  - 10_4064_ap97_2_7
ER  - 
%0 Journal Article
%A Marcin Bilski
%A Kamil Rusek
%T Algebraic approximation of analytic
 sets definable in an o-minimal structure
%J Annales Polonici Mathematici
%D 2010
%P 185-200
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/
%R 10.4064/ap97-2-7
%G en
%F 10_4064_ap97_2_7
Marcin Bilski; Kamil Rusek. Algebraic approximation of analytic
 sets definable in an o-minimal structure. Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 185-200. doi : 10.4064/ap97-2-7. http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/

Cité par Sources :