Algebraic approximation of analytic
sets definable in an o-minimal structure
Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 185-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K,R$ be an algebraically closed field (of characteristic
zero) and a real closed field respectively with $K=R(\sqrt{-1}).$
We show that every $K$-analytic set definable in an o-minimal
expansion of $R$ can be locally approximated by a sequence of
$K$-Nash sets.
Keywords:
algebraically closed field characteristic zero real closed field respectively sqrt every k analytic set definable o minimal expansion locally approximated sequence k nash sets
Affiliations des auteurs :
Marcin Bilski 1 ; Kamil Rusek 1
@article{10_4064_ap97_2_7,
author = {Marcin Bilski and Kamil Rusek},
title = {Algebraic approximation of analytic
sets definable in an o-minimal structure},
journal = {Annales Polonici Mathematici},
pages = {185--200},
publisher = {mathdoc},
volume = {97},
number = {2},
year = {2010},
doi = {10.4064/ap97-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/}
}
TY - JOUR AU - Marcin Bilski AU - Kamil Rusek TI - Algebraic approximation of analytic sets definable in an o-minimal structure JO - Annales Polonici Mathematici PY - 2010 SP - 185 EP - 200 VL - 97 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/ DO - 10.4064/ap97-2-7 LA - en ID - 10_4064_ap97_2_7 ER -
%0 Journal Article %A Marcin Bilski %A Kamil Rusek %T Algebraic approximation of analytic sets definable in an o-minimal structure %J Annales Polonici Mathematici %D 2010 %P 185-200 %V 97 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-7/ %R 10.4064/ap97-2-7 %G en %F 10_4064_ap97_2_7
Marcin Bilski; Kamil Rusek. Algebraic approximation of analytic sets definable in an o-minimal structure. Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 185-200. doi: 10.4064/ap97-2-7
Cité par Sources :