Some characterizations of
hyperbolic almost complex manifolds
Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 159-168
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
First, we give some characterizations of the Kobayashi hyperbolicity of almost complex manifolds. Next, we show that a compact almost complex manifold is hyperbolic if and only if it has the ${\mit\Delta} ^*$-extension property. Finally, we investigate extension-convergence theorems for pseudoholomorphic maps with values in pseudoconvex domains.
Keywords:
first characterizations kobayashi hyperbolicity almost complex manifolds compact almost complex manifold hyperbolic only has mit delta * extension property finally investigate extension convergence theorems pseudoholomorphic maps values pseudoconvex domains
Affiliations des auteurs :
Fathi Haggui 1 ; Adel Khalfallah 1
@article{10_4064_ap97_2_5,
author = {Fathi Haggui and Adel Khalfallah},
title = {Some characterizations of
hyperbolic almost complex manifolds},
journal = {Annales Polonici Mathematici},
pages = {159--168},
year = {2010},
volume = {97},
number = {2},
doi = {10.4064/ap97-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-5/}
}
TY - JOUR AU - Fathi Haggui AU - Adel Khalfallah TI - Some characterizations of hyperbolic almost complex manifolds JO - Annales Polonici Mathematici PY - 2010 SP - 159 EP - 168 VL - 97 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-5/ DO - 10.4064/ap97-2-5 LA - en ID - 10_4064_ap97_2_5 ER -
Fathi Haggui; Adel Khalfallah. Some characterizations of hyperbolic almost complex manifolds. Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 159-168. doi: 10.4064/ap97-2-5
Cité par Sources :