Zeros of solutions of certain higher order linear
differential equations
Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 123-136
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the exponent of convergence of
the zero-sequence of solutions of the differential equation
$$
f^{(k)}+a_{k-1}(z)f^{(k-1)}+\cdots+a_1(z)f' +D(z)f=0,
\tag{1}$$
where $D(z)=Q_1(z)e^{P_1(z)}+Q_2(z)e^{P_2(z)}+Q_3(z)e^{P_3(z)}$,
$P_1(z), P_2(z), P_3(z)$ are polynomials of degree $n\geq1$,
$Q_1(z),Q_2(z),Q_3(z),a_j(z)$ $(j=1,\ldots,$ $k-1)$ are entire
functions of order less
than $n$, and $k\geq2$.
Keywords:
investigate exponent convergence zero sequence solutions differential equation k k cdots tag where polynomials degree geq ldots k entire functions order geq
Affiliations des auteurs :
Hong-Yan Xu 1 ; Cai-Feng Yi 2
@article{10_4064_ap97_2_2,
author = {Hong-Yan Xu and Cai-Feng Yi},
title = {Zeros of solutions of certain higher order linear
differential equations},
journal = {Annales Polonici Mathematici},
pages = {123--136},
publisher = {mathdoc},
volume = {97},
number = {2},
year = {2010},
doi = {10.4064/ap97-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-2/}
}
TY - JOUR AU - Hong-Yan Xu AU - Cai-Feng Yi TI - Zeros of solutions of certain higher order linear differential equations JO - Annales Polonici Mathematici PY - 2010 SP - 123 EP - 136 VL - 97 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-2/ DO - 10.4064/ap97-2-2 LA - en ID - 10_4064_ap97_2_2 ER -
%0 Journal Article %A Hong-Yan Xu %A Cai-Feng Yi %T Zeros of solutions of certain higher order linear differential equations %J Annales Polonici Mathematici %D 2010 %P 123-136 %V 97 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap97-2-2/ %R 10.4064/ap97-2-2 %G en %F 10_4064_ap97_2_2
Hong-Yan Xu; Cai-Feng Yi. Zeros of solutions of certain higher order linear differential equations. Annales Polonici Mathematici, Tome 97 (2010) no. 2, pp. 123-136. doi: 10.4064/ap97-2-2
Cité par Sources :