Pluriharmonic extension in proper image domains
Annales Polonici Mathematici, Tome 96 (2009) no. 2, pp. 163-174.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $D_{j}$ be a bounded hyperconvex domain in ${\mathbb C}^{n_{j}}$ and set $D=D_{1}\times\cdots\times D_{s}$, $j=1,\ldots,s$, $s\geq 3$. Also let ${\mit\Omega}_\pi$ be the image of $D$ under the proper holomorphic map $\pi$. We characterize those continuous functions $f:\partial {\mit\Omega}_\pi\to\mathbb R$ that can be extended to a real-valued pluriharmonic function in ${\mit\Omega}_\pi$.
DOI : 10.4064/ap96-2-4
Keywords: bounded hyperconvex domain mathbb set times cdots times ldots geq mit omega image under proper holomorphic map characterize those continuous functions partial mit omega mathbb extended real valued pluriharmonic function mit omega

Rafa/l Czyż 1

1 Institute of Mathemathics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap96_2_4,
     author = {Rafa/l Czy\.z},
     title = {Pluriharmonic extension in proper image domains},
     journal = {Annales Polonici Mathematici},
     pages = {163--174},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2009},
     doi = {10.4064/ap96-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap96-2-4/}
}
TY  - JOUR
AU  - Rafa/l Czyż
TI  - Pluriharmonic extension in proper image domains
JO  - Annales Polonici Mathematici
PY  - 2009
SP  - 163
EP  - 174
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap96-2-4/
DO  - 10.4064/ap96-2-4
LA  - en
ID  - 10_4064_ap96_2_4
ER  - 
%0 Journal Article
%A Rafa/l Czyż
%T Pluriharmonic extension in proper image domains
%J Annales Polonici Mathematici
%D 2009
%P 163-174
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap96-2-4/
%R 10.4064/ap96-2-4
%G en
%F 10_4064_ap96_2_4
Rafa/l Czyż. Pluriharmonic extension in proper image domains. Annales Polonici Mathematici, Tome 96 (2009) no. 2, pp. 163-174. doi : 10.4064/ap96-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ap96-2-4/

Cité par Sources :