Lifting right-invariant vector fields and prolongation of connections
Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 243-252.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe all $\mathcal {P}\mathcal B_m(G)$-gauge-natural operators $\cal A$ lifting right-invariant vector fields $X$ on principal $G$-bundles $P\to M$ with $m$-dimensional bases into vector fields $\cal A(X)$ on the $r$th order principal prolongation $W^rP=P^rM\times_MJ^rP$ of $P\to M$. In other words, we classify all $\mathcal {P}\mathcal B_m(G)$-natural transformations $J^rLP\times_M W^rP\to TW^rP=LW^rP\times_MW^rP$ covering the identity of $W^rP$, where $J^rLP$ is the $r$-jet prolongation of the Lie algebroid $LP=TP/G$ of $P$, i.e. we find all $\mathcal {P}\mathcal B_m(G)$-natural transformations which are similar to the Kumpera–Spencer isomorphism $J^rLP=LW^rP$. We formulate axioms which characterize the flow operator of the gauge-bundle $W^rP\to M$. We apply the flow operator to prolongations of connections.
DOI : 10.4064/ap95-3-4
Keywords: describe mathcal mathcal gauge natural operators cal lifting right invariant vector fields principal g bundles m dimensional bases vector fields cal rth order principal prolongation times to other words classify mathcal mathcal natural transformations rlp times rp times covering identity where rlp r jet prolongation lie algebroid mathcal mathcal natural transformations which similar kumpera spencer isomorphism rlp formulate axioms which characterize flow operator gauge bundle apply flow operator prolongations connections

W. M. Mikulski 1

1 Institute of Mathematics Jagiellonian University /Lojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap95_3_4,
     author = {W. M. Mikulski},
     title = {Lifting right-invariant vector fields
and prolongation of connections},
     journal = {Annales Polonici Mathematici},
     pages = {243--252},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2009},
     doi = {10.4064/ap95-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-4/}
}
TY  - JOUR
AU  - W. M. Mikulski
TI  - Lifting right-invariant vector fields
and prolongation of connections
JO  - Annales Polonici Mathematici
PY  - 2009
SP  - 243
EP  - 252
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-4/
DO  - 10.4064/ap95-3-4
LA  - en
ID  - 10_4064_ap95_3_4
ER  - 
%0 Journal Article
%A W. M. Mikulski
%T Lifting right-invariant vector fields
and prolongation of connections
%J Annales Polonici Mathematici
%D 2009
%P 243-252
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-4/
%R 10.4064/ap95-3-4
%G en
%F 10_4064_ap95_3_4
W. M. Mikulski. Lifting right-invariant vector fields
and prolongation of connections. Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 243-252. doi : 10.4064/ap95-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-4/

Cité par Sources :