Lifting right-invariant vector fields
and prolongation of connections
Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 243-252
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We describe all $\mathcal {P}\mathcal B_m(G)$-gauge-natural operators $\cal A$
lifting right-invariant vector fields $X$ on principal $G$-bundles $P\to M$ with
$m$-dimensional bases into vector fields $\cal A(X)$ on the $r$th order
principal prolongation $W^rP=P^rM\times_MJ^rP$ of $P\to M$. In other words, we
classify all $\mathcal {P}\mathcal B_m(G)$-natural transformations $J^rLP\times_M W^rP\to
TW^rP=LW^rP\times_MW^rP$ covering the identity of $W^rP$, where $J^rLP$ is the
$r$-jet prolongation of the Lie algebroid $LP=TP/G$ of $P$, i.e. we find all
$\mathcal {P}\mathcal B_m(G)$-natural transformations which are similar to the Kumpera–Spencer
isomorphism $J^rLP=LW^rP$. We formulate axioms which characterize the flow operator
of the gauge-bundle $W^rP\to M$. We apply the flow operator to prolongations of
connections.
Keywords:
describe mathcal mathcal gauge natural operators cal lifting right invariant vector fields principal g bundles m dimensional bases vector fields cal rth order principal prolongation times to other words classify mathcal mathcal natural transformations rlp times rp times covering identity where rlp r jet prolongation lie algebroid mathcal mathcal natural transformations which similar kumpera spencer isomorphism rlp formulate axioms which characterize flow operator gauge bundle apply flow operator prolongations connections
Affiliations des auteurs :
W. M. Mikulski 1
@article{10_4064_ap95_3_4,
author = {W. M. Mikulski},
title = {Lifting right-invariant vector fields
and prolongation of connections},
journal = {Annales Polonici Mathematici},
pages = {243--252},
year = {2009},
volume = {95},
number = {3},
doi = {10.4064/ap95-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-4/}
}
W. M. Mikulski. Lifting right-invariant vector fields and prolongation of connections. Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 243-252. doi: 10.4064/ap95-3-4
Cité par Sources :