Cauchy–Poisson transform and polynomial
inequalities
Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 199-206
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We apply the Cauchy–Poisson transform to prove some
multivariate polynomial inequalities. In particular, we show that
if the pluricomplex Green function of a fat compact set $E$ in
$\Bbb R^N$ is Hölder continuous then $E$ admits a Szegö type
inequality with weight function $\text{dist}(x,\partial
E)^{-(1-\kappa )}$ with a positive $\kappa$. This can be viewed as
a (nontrivial) generalization of the classical result for the
interval $E=[-1,1]\subset \Bbb R$.
Keywords:
apply cauchy poisson transform prove multivariate polynomial inequalities particular pluricomplex green function fat compact set bbb lder continuous admits szeg type inequality weight function text dist partial kappa positive kappa viewed nontrivial generalization classical result interval subset bbb
Affiliations des auteurs :
Mirosław Baran 1
@article{10_4064_ap95_3_1,
author = {Miros{\l}aw Baran},
title = {Cauchy{\textendash}Poisson transform and polynomial
inequalities},
journal = {Annales Polonici Mathematici},
pages = {199--206},
publisher = {mathdoc},
volume = {95},
number = {3},
year = {2009},
doi = {10.4064/ap95-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-1/}
}
Mirosław Baran. Cauchy–Poisson transform and polynomial inequalities. Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 199-206. doi: 10.4064/ap95-3-1
Cité par Sources :