Diffeomorphisms conformal on distributions
Annales Polonici Mathematici, Tome 95 (2009) no. 2, pp. 115-124
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f:M\to N$ be a local diffeomorphism between Riemannian manifolds.
We define the eigenvalues of $f$ to be the eigenvalues of the
self-adjoint, positive definite operator $df^*df:TM\to TM$,
where $df^*$ denotes the operator adjoint to $df$. We show that
if $f$ is conformal on a distribution $D$, then
$\dim V_{\lambda}\geq 2\dim D-\dim M$, where $V_{\lambda}$ denotes
the eigenspace corresponding to the coefficient of conformality $\lambda$
of $f$. Moreover, if $f$ has distinct eigenvalues, then there is locally
a distribution $D$ such that $f$ is conformal on $D$ if and only if
$2\dim D\dim M+1$.
Keywords:
local diffeomorphism between riemannian manifolds define eigenvalues eigenvalues self adjoint positive definite operator *df where * denotes operator adjoint conformal distribution dim lambda geq dim d dim where lambda denotes eigenspace corresponding coefficient conformality lambda moreover has distinct eigenvalues there locally distribution conformal only dim dim
Affiliations des auteurs :
Kamil Niedzia/lomski 1
@article{10_4064_ap95_2_2,
author = {Kamil Niedzia/lomski},
title = {Diffeomorphisms conformal on distributions},
journal = {Annales Polonici Mathematici},
pages = {115--124},
publisher = {mathdoc},
volume = {95},
number = {2},
year = {2009},
doi = {10.4064/ap95-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-2-2/}
}
Kamil Niedzia/lomski. Diffeomorphisms conformal on distributions. Annales Polonici Mathematici, Tome 95 (2009) no. 2, pp. 115-124. doi: 10.4064/ap95-2-2
Cité par Sources :