Dynamical systems method for solving linear finite-rank operator equations
Annales Polonici Mathematici, Tome 95 (2009) no. 1, pp. 77-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A version of the dynamical systems method (DSM) for solving ill-conditioned linear algebraic systems is studied. An a priori and an a posteriori stopping rules are justified. An iterative scheme is constructed for solving ill-conditioned linear algebraic systems.
DOI : 10.4064/ap95-1-6
Keywords: version dynamical systems method dsm solving ill conditioned linear algebraic systems studied priori posteriori stopping rules justified iterative scheme constructed solving ill conditioned linear algebraic systems

N. S. Hoang 1 ; A. G. Ramm 1

1 Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ap95_1_6,
     author = {N. S. Hoang and A. G. Ramm},
     title = {Dynamical systems method for
 solving linear finite-rank operator equations},
     journal = {Annales Polonici Mathematici},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2009},
     doi = {10.4064/ap95-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-6/}
}
TY  - JOUR
AU  - N. S. Hoang
AU  - A. G. Ramm
TI  - Dynamical systems method for
 solving linear finite-rank operator equations
JO  - Annales Polonici Mathematici
PY  - 2009
SP  - 77
EP  - 93
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-6/
DO  - 10.4064/ap95-1-6
LA  - en
ID  - 10_4064_ap95_1_6
ER  - 
%0 Journal Article
%A N. S. Hoang
%A A. G. Ramm
%T Dynamical systems method for
 solving linear finite-rank operator equations
%J Annales Polonici Mathematici
%D 2009
%P 77-93
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-6/
%R 10.4064/ap95-1-6
%G en
%F 10_4064_ap95_1_6
N. S. Hoang; A. G. Ramm. Dynamical systems method for
 solving linear finite-rank operator equations. Annales Polonici Mathematici, Tome 95 (2009) no. 1, pp. 77-93. doi : 10.4064/ap95-1-6. http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-6/

Cité par Sources :