Dynamical systems method for
solving linear finite-rank operator equations
Annales Polonici Mathematici, Tome 95 (2009) no. 1, pp. 77-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A version of the dynamical systems method (DSM) for
solving ill-conditioned linear algebraic systems is studied. An
a priori and an a posteriori stopping rules are justified. An
iterative scheme is constructed for solving ill-conditioned linear algebraic
systems.
Keywords:
version dynamical systems method dsm solving ill conditioned linear algebraic systems studied priori posteriori stopping rules justified iterative scheme constructed solving ill conditioned linear algebraic systems
Affiliations des auteurs :
N. S. Hoang 1 ; A. G. Ramm 1
@article{10_4064_ap95_1_6,
author = {N. S. Hoang and A. G. Ramm},
title = {Dynamical systems method for
solving linear finite-rank operator equations},
journal = {Annales Polonici Mathematici},
pages = {77--93},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2009},
doi = {10.4064/ap95-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-6/}
}
TY - JOUR AU - N. S. Hoang AU - A. G. Ramm TI - Dynamical systems method for solving linear finite-rank operator equations JO - Annales Polonici Mathematici PY - 2009 SP - 77 EP - 93 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-6/ DO - 10.4064/ap95-1-6 LA - en ID - 10_4064_ap95_1_6 ER -
N. S. Hoang; A. G. Ramm. Dynamical systems method for solving linear finite-rank operator equations. Annales Polonici Mathematici, Tome 95 (2009) no. 1, pp. 77-93. doi: 10.4064/ap95-1-6
Cité par Sources :