Using projective limit realizations of Fréchet spaces, we study the topological structure of solution sets for set differential equations and differential inclusions in Fréchet spaces. We apply suitable fixed point results for limit maps induced by maps of inverse systems.
Keywords:
using projective limit realizations chet spaces study topological structure solution sets set differential equations differential inclusions chet spaces apply suitable fixed point results limit maps induced maps inverse systems
Affiliations des auteurs :
A. B/akowska 
1
;
G. Gabor 
1
1
Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_ap95_1_2,
author = {A. B/akowska and G. Gabor},
title = {Topological structure of solution sets to
differential problems in {Fr\'echet} spaces},
journal = {Annales Polonici Mathematici},
pages = {17--36},
year = {2009},
volume = {95},
number = {1},
doi = {10.4064/ap95-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-2/}
}
TY - JOUR
AU - A. B/akowska
AU - G. Gabor
TI - Topological structure of solution sets to
differential problems in Fréchet spaces
JO - Annales Polonici Mathematici
PY - 2009
SP - 17
EP - 36
VL - 95
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-2/
DO - 10.4064/ap95-1-2
LA - en
ID - 10_4064_ap95_1_2
ER -
%0 Journal Article
%A A. B/akowska
%A G. Gabor
%T Topological structure of solution sets to
differential problems in Fréchet spaces
%J Annales Polonici Mathematici
%D 2009
%P 17-36
%V 95
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap95-1-2/
%R 10.4064/ap95-1-2
%G en
%F 10_4064_ap95_1_2
A. B/akowska; G. Gabor. Topological structure of solution sets to
differential problems in Fréchet spaces. Annales Polonici Mathematici, Tome 95 (2009) no. 1, pp. 17-36. doi: 10.4064/ap95-1-2