Some monotonicity and limit results for the
regularised incomplete gamma function
Annales Polonici Mathematici, Tome 94 (2008) no. 3, pp. 283-291
Letting $P(u,x)$ denote the regularised incomplete gamma function, it is shown that for each $\alpha \geq 0$, $P(x,x+\alpha )$ decreases as $x$ increases on the positive real semi-axis, and $P(x,x+\alpha )$ converges to $1/2$ as $x$ tends to infinity. The statistical significance of these results is explored.
Keywords:
letting denote regularised incomplete gamma function shown each alpha geq alpha decreases increases positive real semi axis alpha converges tends infinity statistical significance these results explored
Affiliations des auteurs :
Wojciech Chojnacki  1
@article{10_4064_ap94_3_7,
author = {Wojciech Chojnacki},
title = {Some monotonicity and limit results for the
regularised incomplete gamma function},
journal = {Annales Polonici Mathematici},
pages = {283--291},
year = {2008},
volume = {94},
number = {3},
doi = {10.4064/ap94-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-3-7/}
}
TY - JOUR AU - Wojciech Chojnacki TI - Some monotonicity and limit results for the regularised incomplete gamma function JO - Annales Polonici Mathematici PY - 2008 SP - 283 EP - 291 VL - 94 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-3-7/ DO - 10.4064/ap94-3-7 LA - en ID - 10_4064_ap94_3_7 ER -
Wojciech Chojnacki. Some monotonicity and limit results for the regularised incomplete gamma function. Annales Polonici Mathematici, Tome 94 (2008) no. 3, pp. 283-291. doi: 10.4064/ap94-3-7
Cité par Sources :