Une note à propos du jacobien de $n$
fonctions holomorphes à l'origine de $\mathbb{C}^n$
Annales Polonici Mathematici, Tome 94 (2008) no. 3, pp. 245-264
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f_{1},\ldots,f_{n}$ be $n$
germs of holomorphic functions at the origin of $\mathbb{C}^{n}$,
such that $f_{i}(0)=0$, $1\leq i\leq n$ . We give a proof based on
J. Lipman's theory of residues via Hochschild homology that
the jacobian of $f_{1},\ldots,f_{n}$ belongs to the ideal
generated by $f_{1},\ldots,f_{n}$ if and only if the dimension of
the germ of common zeros of $f_{1},\ldots,f_{n}$ is strictly
positive. In fact, we prove much more general results which are
relative versions of this result replacing the field $\mathbb{C}$
by convenient noetherian rings ${\bf A}$ (Ths. 3.1 and 3.3). We
then show a /Lojasiewicz inequality for the jacobian analogous to
the classical one by S.~/Lojasiewicz for the gradient.
Mots-clés :
ldots germs holomorphic functions origin mathbb leq leq proof based lipmans theory residues via hochschild homology jacobian ldots belongs ideal generated ldots only dimension germ common zeros ldots strictly positive prove much general results which relative versions result replacing field mathbb convenient noetherian rings ths lojasiewicz inequality jacobian analogous classical lojasiewicz gradient
Affiliations des auteurs :
M. Hickel 1
@article{10_4064_ap94_3_4,
author = {M. Hickel},
title = {Une note \`a propos du jacobien de $n$
fonctions holomorphes \`a l'origine de $\mathbb{C}^n$},
journal = {Annales Polonici Mathematici},
pages = {245--264},
publisher = {mathdoc},
volume = {94},
number = {3},
year = {2008},
doi = {10.4064/ap94-3-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-3-4/}
}
TY - JOUR
AU - M. Hickel
TI - Une note à propos du jacobien de $n$
fonctions holomorphes à l'origine de $\mathbb{C}^n$
JO - Annales Polonici Mathematici
PY - 2008
SP - 245
EP - 264
VL - 94
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-3-4/
DO - 10.4064/ap94-3-4
LA - fr
ID - 10_4064_ap94_3_4
ER -
M. Hickel. Une note à propos du jacobien de $n$
fonctions holomorphes à l'origine de $\mathbb{C}^n$. Annales Polonici Mathematici, Tome 94 (2008) no. 3, pp. 245-264. doi: 10.4064/ap94-3-4
Cité par Sources :