On the /Lojasiewicz exponent at infinity of real polynomials
Annales Polonici Mathematici, Tome 94 (2008) no. 3, pp. 197-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f \colon {\Bbb R}^n \rightarrow {\Bbb R}$ be a nonconstant polynomial function. Using the information from the “curve of tangency” of $f,$ we provide a
method to determine the Łojasiewicz exponent at infinity of $f.$ As a corollary, we
give a computational criterion to decide if the /Lojasiewicz exponent at infinity is
finite or not. Then we obtain a formula to calculate the set of points at which the
polynomial $f$ is not proper. Moreover, a relation between the /Lojasiewicz exponent at
infinity of $f$ and the problem of computing the global optimum of $f$ is also
established.
Mots-clés :
colon bbb rightarrow bbb nonconstant polynomial function using information curve tangency provide method determine ojasiewicz exponent infinity corollary computational criterion decide lojasiewicz exponent infinity finite obtain formula calculate set points which polynomial proper moreover relation between lojasiewicz exponent infinity problem computing global optimum established
Affiliations des auteurs :
Ha Huy Vui 1 ; Pham Tien Son 2
@article{10_4064_ap94_3_1,
author = {Ha Huy Vui and Pham Tien Son},
title = {On the {/Lojasiewicz} exponent at infinity of real polynomials},
journal = {Annales Polonici Mathematici},
pages = {197--208},
publisher = {mathdoc},
volume = {94},
number = {3},
year = {2008},
doi = {10.4064/ap94-3-1},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-3-1/}
}
TY - JOUR AU - Ha Huy Vui AU - Pham Tien Son TI - On the /Lojasiewicz exponent at infinity of real polynomials JO - Annales Polonici Mathematici PY - 2008 SP - 197 EP - 208 VL - 94 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-3-1/ DO - 10.4064/ap94-3-1 LA - pl ID - 10_4064_ap94_3_1 ER -
Ha Huy Vui; Pham Tien Son. On the /Lojasiewicz exponent at infinity of real polynomials. Annales Polonici Mathematici, Tome 94 (2008) no. 3, pp. 197-208. doi: 10.4064/ap94-3-1
Cité par Sources :