Geometry of Markov systems and codimension one foliations
Annales Polonici Mathematici, Tome 94 (2008) no. 2, pp. 187-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the theory of graph directed Markov systems can be used to study exceptional minimal sets of some foliated manifolds.
A $C^1$ smooth embedding of a contracting or parabolic Markov system into the holonomy pseudogroup of a codimension one foliation allows us to describe in detail the $h$-dimensional Hausdorff and packing measures of the intersection of a complete transversal with exceptional minimal sets.
Keywords:
theory graph directed markov systems study exceptional minimal sets foliated manifolds smooth embedding contracting parabolic markov system holonomy pseudogroup codimension foliation allows describe detail h dimensional hausdorff packing measures intersection complete transversal exceptional minimal sets
Affiliations des auteurs :
Andrzej Bi/s 1 ; Mariusz Urba/nski 2
@article{10_4064_ap94_2_5,
author = {Andrzej Bi/s and Mariusz Urba/nski},
title = {Geometry of {Markov} systems and codimension one foliations},
journal = {Annales Polonici Mathematici},
pages = {187--196},
publisher = {mathdoc},
volume = {94},
number = {2},
year = {2008},
doi = {10.4064/ap94-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-2-5/}
}
TY - JOUR AU - Andrzej Bi/s AU - Mariusz Urba/nski TI - Geometry of Markov systems and codimension one foliations JO - Annales Polonici Mathematici PY - 2008 SP - 187 EP - 196 VL - 94 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-2-5/ DO - 10.4064/ap94-2-5 LA - en ID - 10_4064_ap94_2_5 ER -
Andrzej Bi/s; Mariusz Urba/nski. Geometry of Markov systems and codimension one foliations. Annales Polonici Mathematici, Tome 94 (2008) no. 2, pp. 187-196. doi: 10.4064/ap94-2-5
Cité par Sources :