On the Green function on a certain class of
hyperconvex domains
Annales Polonici Mathematici, Tome 94 (2008) no. 2, pp. 149-185
We study the behavior of the pluricomplex Green
function on a bounded hyperconvex domain $D$ that admits a
smooth plurisubharmonic exhaustion function $\psi$ such that
$1/|\psi|$ is integrable
near the boundary of $D$, and moreover satisfies the estimate
$|\psi | \leq C \exp ( - C' (\log (1/\delta_D)) ^\alpha )$ at points
close enough to the boundary with constants $C,C'>0$
and $0\alpha1$. Furthermore, we obtain a Hopf lemma for
such a function $\psi$.
Finally, we prove a lower bound on the Bergman distance on $D$.
Keywords:
study behavior pluricomplex green function bounded hyperconvex domain admits smooth plurisubharmonic exhaustion function psi psi integrable near boundary moreover satisfies estimate psi leq exp log delta alpha points close enough boundary constants alpha furthermore obtain hopf lemma function psi finally prove lower bound bergman distance
Affiliations des auteurs :
Gregor Herbort  1
@article{10_4064_ap94_2_4,
author = {Gregor Herbort},
title = {On the {Green} function on a certain class of
hyperconvex domains},
journal = {Annales Polonici Mathematici},
pages = {149--185},
year = {2008},
volume = {94},
number = {2},
doi = {10.4064/ap94-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-2-4/}
}
Gregor Herbort. On the Green function on a certain class of hyperconvex domains. Annales Polonici Mathematici, Tome 94 (2008) no. 2, pp. 149-185. doi: 10.4064/ap94-2-4
Cité par Sources :