Normal families of meromorphic mappings
of several complex variables
into $\mathbb{C}P^n$ for moving hypersurfaces
Annales Polonici Mathematici, Tome 94 (2008) no. 2, pp. 97-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove some normality criteria
for families of meromorphic mappings of a domain $D\subset\mathbb{C}^m$ into
$\mathbb{C} P^n$ under a condition on the inverse images of moving
hypersurfaces.
Keywords:
prove normality criteria families meromorphic mappings domain subset mathbb mathbb under condition inverse images moving hypersurfaces
Affiliations des auteurs :
Si Duc Quang 1 ; Tran Van Tan 1
@article{10_4064_ap94_2_1,
author = {Si Duc Quang and Tran Van Tan},
title = {Normal families of meromorphic mappings
of several complex variables
into $\mathbb{C}P^n$ for moving hypersurfaces},
journal = {Annales Polonici Mathematici},
pages = {97--110},
publisher = {mathdoc},
volume = {94},
number = {2},
year = {2008},
doi = {10.4064/ap94-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-2-1/}
}
TY - JOUR
AU - Si Duc Quang
AU - Tran Van Tan
TI - Normal families of meromorphic mappings
of several complex variables
into $\mathbb{C}P^n$ for moving hypersurfaces
JO - Annales Polonici Mathematici
PY - 2008
SP - 97
EP - 110
VL - 94
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-2-1/
DO - 10.4064/ap94-2-1
LA - en
ID - 10_4064_ap94_2_1
ER -
%0 Journal Article
%A Si Duc Quang
%A Tran Van Tan
%T Normal families of meromorphic mappings
of several complex variables
into $\mathbb{C}P^n$ for moving hypersurfaces
%J Annales Polonici Mathematici
%D 2008
%P 97-110
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap94-2-1/
%R 10.4064/ap94-2-1
%G en
%F 10_4064_ap94_2_1
Si Duc Quang; Tran Van Tan. Normal families of meromorphic mappings
of several complex variables
into $\mathbb{C}P^n$ for moving hypersurfaces. Annales Polonici Mathematici, Tome 94 (2008) no. 2, pp. 97-110. doi: 10.4064/ap94-2-1
Cité par Sources :