Foliations by surfaces of a peculiar class
Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 89-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify surfaces in 3-dimensional space forms which have all the local conformal invariants constant and show that compact 3-manifolds of nonzero constant sectional curvature admit no foliations by such surfaces.
DOI : 10.4064/ap94-1-7
Keywords: classify surfaces dimensional space forms which have local conformal invariants constant compact manifolds nonzero constant sectional curvature admit foliations surfaces

Adam Bartoszek 1 ; Paweł Walczak 2

1 Katedra Geometrii Wydział Matematyki i Informatyki Uniwersytet Łódzki 90-238 Łódź, Poland
2 Katedra Geometrii Wydział Matematyki i Informatyki Uniwersytet Łódzki 90-238 Łódź, Poland and Instytut Matematyczny PAN 00-956 Warszawa, Poland
@article{10_4064_ap94_1_7,
     author = {Adam Bartoszek and Pawe{\l}  Walczak},
     title = {Foliations by surfaces of a peculiar class},
     journal = {Annales Polonici Mathematici},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2008},
     doi = {10.4064/ap94-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-7/}
}
TY  - JOUR
AU  - Adam Bartoszek
AU  - Paweł  Walczak
TI  - Foliations by surfaces of a peculiar class
JO  - Annales Polonici Mathematici
PY  - 2008
SP  - 89
EP  - 95
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-7/
DO  - 10.4064/ap94-1-7
LA  - en
ID  - 10_4064_ap94_1_7
ER  - 
%0 Journal Article
%A Adam Bartoszek
%A Paweł  Walczak
%T Foliations by surfaces of a peculiar class
%J Annales Polonici Mathematici
%D 2008
%P 89-95
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-7/
%R 10.4064/ap94-1-7
%G en
%F 10_4064_ap94_1_7
Adam Bartoszek; Paweł  Walczak. Foliations by surfaces of a peculiar class. Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 89-95. doi : 10.4064/ap94-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-7/

Cité par Sources :