Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives
Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 53-78.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Darboux problem for a functional differential equation: $$\displaylines{ \frac{\partial^2u}{\partial x \partial y}(x,y)=f\bigg(x,y,u_{(x,y)},u(x,y),\frac{\partial u}{\partial x}(x,y),\frac{\partial u}{\partial y}(x,y)\bigg) \hbox{ a.e. in } [0,a]\times[0,b],\cr u(x,y)=\psi(x,y) \quad\ \hbox{on } [-a_{0},a]\times[-b_{0},b]\setminus(0,a]\times(0,b],\cr} $$ where the function $u_{(x,y)}:[-a_{0},0]\times[-b_{0},0]\to \mathbb R^{k}$ is defined by $u_{(x,y)}(s,t)=u({s+x},{t+y})$ for $ (s,t)\in [-a_{0},0]\times[-b_{0},0]$. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.
DOI : 10.4064/ap94-1-5
Keywords: consider darboux problem functional differential equation displaylines frac partial partial partial bigg frac partial partial frac partial partial bigg hbox times psi quad hbox a times b setminus times where function a times b mathbb defined a times b few theorems about weak strong inequalities problem discuss where right hand side differential equation linear

Adrian Karpowicz 1

1 Institute of Mathematics University of Gdańsk Wit Stwosz St. 57 80-952 Gdańsk, Poland
@article{10_4064_ap94_1_5,
     author = {Adrian Karpowicz},
     title = {Carath\'eodory solutions of hyperbolic functional differential
 inequalities with first order derivatives},
     journal = {Annales Polonici Mathematici},
     pages = {53--78},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2008},
     doi = {10.4064/ap94-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/}
}
TY  - JOUR
AU  - Adrian Karpowicz
TI  - Carathéodory solutions of hyperbolic functional differential
 inequalities with first order derivatives
JO  - Annales Polonici Mathematici
PY  - 2008
SP  - 53
EP  - 78
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/
DO  - 10.4064/ap94-1-5
LA  - en
ID  - 10_4064_ap94_1_5
ER  - 
%0 Journal Article
%A Adrian Karpowicz
%T Carathéodory solutions of hyperbolic functional differential
 inequalities with first order derivatives
%J Annales Polonici Mathematici
%D 2008
%P 53-78
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/
%R 10.4064/ap94-1-5
%G en
%F 10_4064_ap94_1_5
Adrian Karpowicz. Carathéodory solutions of hyperbolic functional differential
 inequalities with first order derivatives. Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 53-78. doi : 10.4064/ap94-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/

Cité par Sources :