Carathéodory solutions of hyperbolic functional differential
inequalities with first order derivatives
Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 53-78
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the Darboux
problem for a functional differential equation:
$$\displaylines{
\frac{\partial^2u}{\partial x \partial
y}(x,y)=f\bigg(x,y,u_{(x,y)},u(x,y),\frac{\partial u}{\partial
x}(x,y),\frac{\partial u}{\partial y}(x,y)\bigg)
\hbox{ a.e. in }
[0,a]\times[0,b],\cr
u(x,y)=\psi(x,y) \quad\ \hbox{on }
[-a_{0},a]\times[-b_{0},b]\setminus(0,a]\times(0,b],\cr}
$$
where the function $u_{(x,y)}:[-a_{0},0]\times[-b_{0},0]\to
\mathbb R^{k}$ is
defined by $u_{(x,y)}(s,t)=u({s+x},{t+y})$ for $ (s,t)\in
[-a_{0},0]\times[-b_{0},0]$. We give a few theorems about weak and
strong inequalities for this problem. We also discuss the case where the right-hand side
of the differential equation is linear.
Keywords:
consider darboux problem functional differential equation displaylines frac partial partial partial bigg frac partial partial frac partial partial bigg hbox times psi quad hbox a times b setminus times where function a times b mathbb defined a times b few theorems about weak strong inequalities problem discuss where right hand side differential equation linear
Affiliations des auteurs :
Adrian Karpowicz 1
@article{10_4064_ap94_1_5,
author = {Adrian Karpowicz},
title = {Carath\'eodory solutions of hyperbolic functional differential
inequalities with first order derivatives},
journal = {Annales Polonici Mathematici},
pages = {53--78},
year = {2008},
volume = {94},
number = {1},
doi = {10.4064/ap94-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/}
}
TY - JOUR AU - Adrian Karpowicz TI - Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives JO - Annales Polonici Mathematici PY - 2008 SP - 53 EP - 78 VL - 94 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/ DO - 10.4064/ap94-1-5 LA - en ID - 10_4064_ap94_1_5 ER -
%0 Journal Article %A Adrian Karpowicz %T Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives %J Annales Polonici Mathematici %D 2008 %P 53-78 %V 94 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-5/ %R 10.4064/ap94-1-5 %G en %F 10_4064_ap94_1_5
Adrian Karpowicz. Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives. Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 53-78. doi: 10.4064/ap94-1-5
Cité par Sources :