Zero-set property of $o$-minimal indefinitely Peano differentiable functions
Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 29-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given an $o$-minimal expansion $\mathcal M$ of a real closed field $R$ which is not polynomially bounded.
Let $\mathcal {TP}^\infty$ denote the definable indefinitely Peano differentiable functions.
If we further assume that $\mathcal M$ admits $\mathcal {TP}^{\infty}$ cell
decomposition, each definable closed subset $A$ of $R^n$ is the zero-set of a $\mathcal {TP}^{\infty}$ function $f:R^n\rightarrow R$.
This implies $\mathcal {TP}^\infty$ approximation of definable continuous functions
and gluing of $\mathcal {TP}^\infty$ functions defined on closed definable sets.
Keywords:
given o minimal expansion mathcal real closed field which polynomially bounded mathcal infty denote definable indefinitely peano differentiable functions further assume mathcal admits mathcal infty cell decomposition each definable closed subset zero set mathcal infty function rightarrow implies mathcal infty approximation definable continuous functions gluing mathcal infty functions defined closed definable sets
Affiliations des auteurs :
Andreas Fischer 1
@article{10_4064_ap94_1_3,
author = {Andreas Fischer},
title = {Zero-set property of $o$-minimal indefinitely {Peano} differentiable functions},
journal = {Annales Polonici Mathematici},
pages = {29--41},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {2008},
doi = {10.4064/ap94-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-3/}
}
TY - JOUR AU - Andreas Fischer TI - Zero-set property of $o$-minimal indefinitely Peano differentiable functions JO - Annales Polonici Mathematici PY - 2008 SP - 29 EP - 41 VL - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-3/ DO - 10.4064/ap94-1-3 LA - en ID - 10_4064_ap94_1_3 ER -
Andreas Fischer. Zero-set property of $o$-minimal indefinitely Peano differentiable functions. Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 29-41. doi: 10.4064/ap94-1-3
Cité par Sources :