Existence and uniqueness of periodic solutions for a kind of
nonlinear $n$th order differential equations with delays
Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 15-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By applying the continuation theorem of coincidence degree theory, we establish new results on the existence and uniqueness of $2\pi $-periodic solutions for a class of nonlinear $n$th order differential equations with delays.
Keywords:
applying continuation theorem coincidence degree theory establish results existence uniqueness periodic solutions class nonlinear nth order differential equations delays
Affiliations des auteurs :
Weiwen Shao 1 ; Fuxing Zhang 2 ; Ya Li 3
@article{10_4064_ap94_1_2,
author = {Weiwen Shao and Fuxing Zhang and Ya Li},
title = {Existence and uniqueness of periodic solutions for a kind of
nonlinear $n$th order differential equations with delays},
journal = {Annales Polonici Mathematici},
pages = {15--27},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {2008},
doi = {10.4064/ap94-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-2/}
}
TY - JOUR AU - Weiwen Shao AU - Fuxing Zhang AU - Ya Li TI - Existence and uniqueness of periodic solutions for a kind of nonlinear $n$th order differential equations with delays JO - Annales Polonici Mathematici PY - 2008 SP - 15 EP - 27 VL - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-2/ DO - 10.4064/ap94-1-2 LA - en ID - 10_4064_ap94_1_2 ER -
%0 Journal Article %A Weiwen Shao %A Fuxing Zhang %A Ya Li %T Existence and uniqueness of periodic solutions for a kind of nonlinear $n$th order differential equations with delays %J Annales Polonici Mathematici %D 2008 %P 15-27 %V 94 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap94-1-2/ %R 10.4064/ap94-1-2 %G en %F 10_4064_ap94_1_2
Weiwen Shao; Fuxing Zhang; Ya Li. Existence and uniqueness of periodic solutions for a kind of nonlinear $n$th order differential equations with delays. Annales Polonici Mathematici, Tome 94 (2008) no. 1, pp. 15-27. doi: 10.4064/ap94-1-2
Cité par Sources :