Plane Jacobian conjecture for simple polynomials
Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 247-251
A non-zero constant Jacobian polynomial map $F=(P,Q):\mathbb{C}^2
\rightarrow \mathbb{C}^2$ has a polynomial inverse if the
component $P$ is a simple polynomial, i.e. its regular extension
to a morphism $p:X\rightarrow \mathbb{P}^1$ in a
compactification $X$ of $\mathbb{C}^2$ has the following property:
the restriction of $p$ to each irreducible component $C$ of the
compactification divisor $D = X-\mathbb{C}^2$ is of degree $0$
or $1$.
Keywords:
non zero constant jacobian polynomial map mathbb rightarrow mathbb has polynomial inverse component simple polynomial its regular extension morphism rightarrow mathbb compactification mathbb has following property restriction each irreducible component compactification divisor x mathbb degree
Affiliations des auteurs :
Nguyen Van Chau  1
@article{10_4064_ap93_3_5,
author = {Nguyen Van Chau},
title = {Plane {Jacobian} conjecture for simple polynomials},
journal = {Annales Polonici Mathematici},
pages = {247--251},
year = {2008},
volume = {93},
number = {3},
doi = {10.4064/ap93-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-5/}
}
Nguyen Van Chau. Plane Jacobian conjecture for simple polynomials. Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 247-251. doi: 10.4064/ap93-3-5
Cité par Sources :