Global existence and long-time behavior of solutions to a class of degenerate parabolic equations
Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 217-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the global existence and long-time behavior of solutions for a class of semilinear degenerate parabolic equations in an arbitrary domain.
DOI : 10.4064/ap93-3-3
Keywords: study global existence long time behavior solutions class semilinear degenerate parabolic equations arbitrary domain

Cung The Anh 1 ; Phan Quoc Hung 1

1 Department of Mathematics Hanoi University of Education 136 Xuan Thuy, Cau Giay Hanoi, Vietnam
@article{10_4064_ap93_3_3,
     author = {Cung The Anh and Phan Quoc Hung},
     title = {Global existence and long-time behavior of solutions
 to a class of degenerate parabolic equations},
     journal = {Annales Polonici Mathematici},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2008},
     doi = {10.4064/ap93-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-3/}
}
TY  - JOUR
AU  - Cung The Anh
AU  - Phan Quoc Hung
TI  - Global existence and long-time behavior of solutions
 to a class of degenerate parabolic equations
JO  - Annales Polonici Mathematici
PY  - 2008
SP  - 217
EP  - 230
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-3/
DO  - 10.4064/ap93-3-3
LA  - en
ID  - 10_4064_ap93_3_3
ER  - 
%0 Journal Article
%A Cung The Anh
%A Phan Quoc Hung
%T Global existence and long-time behavior of solutions
 to a class of degenerate parabolic equations
%J Annales Polonici Mathematici
%D 2008
%P 217-230
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-3/
%R 10.4064/ap93-3-3
%G en
%F 10_4064_ap93_3_3
Cung The Anh; Phan Quoc Hung. Global existence and long-time behavior of solutions
 to a class of degenerate parabolic equations. Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 217-230. doi : 10.4064/ap93-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-3/

Cité par Sources :