Convergence in capacity
Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 91-99
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if ${\mathcal E}({\mit \Omega })\ni u_j\to u\in {\mathcal E}({\mit \Omega })$ in $C_n$-capacity then $\mathop {\rm lim\, inf}_{j\to \infty }(dd^cu_j)^n\geq 1_{\{ u>-\infty \} }(dd^cu)^n$. This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.
Keywords:
prove mathcal mit omega mathcal mit omega n capacity mathop lim inf infty geq infty result consider convergence capacity bounded hyperconvex domains compact hler manifolds
Affiliations des auteurs :
Pham Hoang Hiep 1
@article{10_4064_ap93_1_8,
author = {Pham Hoang Hiep},
title = {Convergence in capacity},
journal = {Annales Polonici Mathematici},
pages = {91--99},
year = {2008},
volume = {93},
number = {1},
doi = {10.4064/ap93-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-1-8/}
}
Pham Hoang Hiep. Convergence in capacity. Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 91-99. doi: 10.4064/ap93-1-8
Cité par Sources :