Positive periodic solutions of
functional differential equations with infinite delay
Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 75-83
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The author applies a generalized Leggett–Williams fixed point theorem to the study of the nonlinear functional differential equation $$ x'(t)=-a(t,x(t))x(t)+f(t,x_t). $$ Sufficient conditions are established for the existence of multiple positive periodic solutions.
Keywords:
author applies generalized leggett williams fixed point theorem study nonlinear functional differential equation a t sufficient conditions established existence multiple positive periodic solutions
Affiliations des auteurs :
Changxiu Song 1
@article{10_4064_ap93_1_6,
author = {Changxiu Song},
title = {Positive periodic solutions of
functional differential equations with infinite delay},
journal = {Annales Polonici Mathematici},
pages = {75--83},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2008},
doi = {10.4064/ap93-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-1-6/}
}
TY - JOUR AU - Changxiu Song TI - Positive periodic solutions of functional differential equations with infinite delay JO - Annales Polonici Mathematici PY - 2008 SP - 75 EP - 83 VL - 93 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap93-1-6/ DO - 10.4064/ap93-1-6 LA - en ID - 10_4064_ap93_1_6 ER -
Changxiu Song. Positive periodic solutions of functional differential equations with infinite delay. Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 75-83. doi: 10.4064/ap93-1-6
Cité par Sources :