On the zero set of the Kobayashi–Royden pseudometric
of the spectral unit ball
Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 53-68
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given $A\in {\mit\Omega} _n,$ the $n^2$-dimensional spectral unit ball, we show that if $B$ is an $n\times n$ complex matrix, then $B$ is a “generalized” tangent vector at $A$ to an entire curve in ${\mit\Omega} _n$ if and only if $B$ is in the tangent cone $C_A$ to the isospectral variety at $A.$ In the case of ${\mit\Omega} _3,$ the zero set of the Kobayashi–Royden pseudometric is completely described.
Keywords:
given mit omega dimensional spectral unit ball times complex matrix generalized tangent vector entire curve mit omega only tangent cone isospectral variety mit omega zero set kobayashi royden pseudometric completely described
Affiliations des auteurs :
Nikolai Nikolov 1 ; Pascal J. Thomas 2
@article{10_4064_ap93_1_4,
author = {Nikolai Nikolov and Pascal J. Thomas},
title = {On the zero set of the {Kobayashi{\textendash}Royden} pseudometric
of the spectral unit ball},
journal = {Annales Polonici Mathematici},
pages = {53--68},
year = {2008},
volume = {93},
number = {1},
doi = {10.4064/ap93-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-1-4/}
}
TY - JOUR AU - Nikolai Nikolov AU - Pascal J. Thomas TI - On the zero set of the Kobayashi–Royden pseudometric of the spectral unit ball JO - Annales Polonici Mathematici PY - 2008 SP - 53 EP - 68 VL - 93 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap93-1-4/ DO - 10.4064/ap93-1-4 LA - en ID - 10_4064_ap93_1_4 ER -
%0 Journal Article %A Nikolai Nikolov %A Pascal J. Thomas %T On the zero set of the Kobayashi–Royden pseudometric of the spectral unit ball %J Annales Polonici Mathematici %D 2008 %P 53-68 %V 93 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap93-1-4/ %R 10.4064/ap93-1-4 %G en %F 10_4064_ap93_1_4
Nikolai Nikolov; Pascal J. Thomas. On the zero set of the Kobayashi–Royden pseudometric of the spectral unit ball. Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 53-68. doi: 10.4064/ap93-1-4
Cité par Sources :