The transmission problem with
boundary conditions given by real measures
Annales Polonici Mathematici, Tome 92 (2007) no. 3, pp. 243-259
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The unique solvability of the problem ${\mit\Delta} u=0$ in $G^+\cup G^-$, $u_+ -au_- =f$ on $\partial G^+$, $n^+ \cdot \nabla u_+ -bn^+ \cdot \nabla u_-=g $ on $\partial G^+$ is proved. Here $a$, $b$ are positive constants and $g$ is a real measure. The solution is constructed using the boundary integral equation method.
Keywords:
unique solvability problem mit delta cup au partial cdot nabla bn cdot nabla partial proved here positive constants real measure solution constructed using boundary integral equation method
Affiliations des auteurs :
Dagmar Medková 1
@article{10_4064_ap92_3_4,
author = {Dagmar Medkov\'a},
title = {The transmission problem with
boundary conditions given by real measures},
journal = {Annales Polonici Mathematici},
pages = {243--259},
year = {2007},
volume = {92},
number = {3},
doi = {10.4064/ap92-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap92-3-4/}
}
TY - JOUR AU - Dagmar Medková TI - The transmission problem with boundary conditions given by real measures JO - Annales Polonici Mathematici PY - 2007 SP - 243 EP - 259 VL - 92 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap92-3-4/ DO - 10.4064/ap92-3-4 LA - en ID - 10_4064_ap92_3_4 ER -
Dagmar Medková. The transmission problem with boundary conditions given by real measures. Annales Polonici Mathematici, Tome 92 (2007) no. 3, pp. 243-259. doi: 10.4064/ap92-3-4
Cité par Sources :