Difference methods for parabolic functional
differential problems of the Neumann type
Annales Polonici Mathematici, Tome 92 (2007) no. 2, pp. 163-178
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type are considered. A general class of difference methods for the problem is constructed. Theorems on the convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.
Keywords:
nonlinear parabolic functional differential equations initial boundary conditions neumann type considered general class difference methods problem constructed theorems convergence difference schemes error estimates approximate solutions presented proof stability difference functional problem based comparison technique nonlinear estimates perron type respect functional variable given functions numerical examples given
Affiliations des auteurs :
K. Kropielnicka 1
@article{10_4064_ap92_2_5,
author = {K. Kropielnicka},
title = {Difference methods for parabolic functional
differential problems of the {Neumann} type},
journal = {Annales Polonici Mathematici},
pages = {163--178},
year = {2007},
volume = {92},
number = {2},
doi = {10.4064/ap92-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap92-2-5/}
}
TY - JOUR AU - K. Kropielnicka TI - Difference methods for parabolic functional differential problems of the Neumann type JO - Annales Polonici Mathematici PY - 2007 SP - 163 EP - 178 VL - 92 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap92-2-5/ DO - 10.4064/ap92-2-5 LA - en ID - 10_4064_ap92_2_5 ER -
K. Kropielnicka. Difference methods for parabolic functional differential problems of the Neumann type. Annales Polonici Mathematici, Tome 92 (2007) no. 2, pp. 163-178. doi: 10.4064/ap92-2-5
Cité par Sources :