Definable stratification satisfying the Whitney property with exponent 1
Annales Polonici Mathematici, Tome 92 (2007) no. 2, pp. 155-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for a finite collection of sets $A_1,\dots,A_s\subset\mathbb R^{k+n}$ definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto $\mathbb R^k$ satisfy the Whitney property with exponent~1.
DOI : 10.4064/ap92-2-4
Keywords: prove finite collection sets dots subset mathbb definable o minimal structure there exists compatible definable stratification stratum fibers its projection mathbb satisfy whitney property exponent

Beata Kocel-Cynk 1

1 Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland
@article{10_4064_ap92_2_4,
     author = {Beata Kocel-Cynk},
     title = {Definable stratification satisfying the {Whitney} property
 with exponent 1},
     journal = {Annales Polonici Mathematici},
     pages = {155--162},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2007},
     doi = {10.4064/ap92-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap92-2-4/}
}
TY  - JOUR
AU  - Beata Kocel-Cynk
TI  - Definable stratification satisfying the Whitney property
 with exponent 1
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 155
EP  - 162
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap92-2-4/
DO  - 10.4064/ap92-2-4
LA  - en
ID  - 10_4064_ap92_2_4
ER  - 
%0 Journal Article
%A Beata Kocel-Cynk
%T Definable stratification satisfying the Whitney property
 with exponent 1
%J Annales Polonici Mathematici
%D 2007
%P 155-162
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap92-2-4/
%R 10.4064/ap92-2-4
%G en
%F 10_4064_ap92_2_4
Beata Kocel-Cynk. Definable stratification satisfying the Whitney property
 with exponent 1. Annales Polonici Mathematici, Tome 92 (2007) no. 2, pp. 155-162. doi : 10.4064/ap92-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ap92-2-4/

Cité par Sources :