A new invariant Kähler metric on relatively compact domains in a complex manifold
Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 147-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a new invariant Kähler metric on relatively compact domains in a complex manifold, which is the Bergman metric of the $L^2$ space of holomorphic sections of the pluricanonical bundle equipped with the Hermitian metric introduced by Narasimhan–Simha.
DOI : 10.4064/ap91-2-5
Keywords: introduce invariant hler metric relatively compact domains complex manifold which bergman metric space holomorphic sections pluricanonical bundle equipped hermitian metric introduced narasimhan simha

Bo-Yong Chen 1

1 Department of Mathematics Tongji University Shanghai 200092, P.R. China
@article{10_4064_ap91_2_5,
     author = {Bo-Yong Chen},
     title = {A new invariant {K\"ahler} metric
 on relatively compact domains in a complex manifold},
     journal = {Annales Polonici Mathematici},
     pages = {147--159},
     publisher = {mathdoc},
     volume = {91},
     number = {2-3},
     year = {2007},
     doi = {10.4064/ap91-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-5/}
}
TY  - JOUR
AU  - Bo-Yong Chen
TI  - A new invariant Kähler metric
 on relatively compact domains in a complex manifold
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 147
EP  - 159
VL  - 91
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-5/
DO  - 10.4064/ap91-2-5
LA  - en
ID  - 10_4064_ap91_2_5
ER  - 
%0 Journal Article
%A Bo-Yong Chen
%T A new invariant Kähler metric
 on relatively compact domains in a complex manifold
%J Annales Polonici Mathematici
%D 2007
%P 147-159
%V 91
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-5/
%R 10.4064/ap91-2-5
%G en
%F 10_4064_ap91_2_5
Bo-Yong Chen. A new invariant Kähler metric
 on relatively compact domains in a complex manifold. Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 147-159. doi : 10.4064/ap91-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-5/

Cité par Sources :