Attracting divisors on projective algebraic varieties
Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 263-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain sufficient and necessary conditions (in terms of positive singular metrics on an associated line bundle) for a positive divisor $D$ on a projective algebraic variety $X$ to be attracting for a holomorphic map $f:X \to X$.
DOI : 10.4064/ap91-2-13
Keywords: obtain sufficient necessary conditions terms positive singular metrics associated line bundle positive divisor projective algebraic variety attracting holomorphic map

Małgorzata Stawiska 1

1 Department of Mathematics, Statistics & Computer Science University of Illinois at Chicago 851 S. Morgan St. Chicago, IL 60607, U.S.A.
@article{10_4064_ap91_2_13,
     author = {Ma{\l}gorzata Stawiska},
     title = {Attracting divisors on projective algebraic varieties},
     journal = {Annales Polonici Mathematici},
     pages = {263--270},
     publisher = {mathdoc},
     volume = {91},
     number = {2-3},
     year = {2007},
     doi = {10.4064/ap91-2-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-13/}
}
TY  - JOUR
AU  - Małgorzata Stawiska
TI  - Attracting divisors on projective algebraic varieties
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 263
EP  - 270
VL  - 91
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-13/
DO  - 10.4064/ap91-2-13
LA  - en
ID  - 10_4064_ap91_2_13
ER  - 
%0 Journal Article
%A Małgorzata Stawiska
%T Attracting divisors on projective algebraic varieties
%J Annales Polonici Mathematici
%D 2007
%P 263-270
%V 91
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-13/
%R 10.4064/ap91-2-13
%G en
%F 10_4064_ap91_2_13
Małgorzata Stawiska. Attracting divisors on projective algebraic varieties. Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 263-270. doi : 10.4064/ap91-2-13. http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-13/

Cité par Sources :