${\overline{\partial }}$-cohomology and geometry of the boundary of pseudoconvex domains
Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 249-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1958, H. Grauert proved: If $D$ is a strongly pseudoconvex domain in a complex manifold, then $D$ is holomorphically convex. In contrast, various cases occur if the Levi form of the boundary of $D$ is everywhere zero, i.e. if $\partial D$ is Levi flat. A review is given of the results on the domains with Levi flat boundaries in recent decades. Related results on the domains with divisorial boundaries and generically strongly pseudoconvex domains are also presented. As for the methods, it is explained how Hartogs type extension theorems and $L^2$ finiteness theorem for the $\overline I$-cohomology are applied.
DOI : 10.4064/ap91-2-12
Keywords: grauert proved strongly pseudoconvex domain complex manifold holomorphically convex contrast various cases occur levi form boundary everywhere zero partial levi flat review given results domains levi flat boundaries recent decades related results domains divisorial boundaries generically strongly pseudoconvex domains presented methods explained hartogs type extension theorems finiteness theorem overline i cohomology applied

Takeo Ohsawa 1

1 Graduate School of Mathematics Nagoya University Chikusaku Furocho 464-8602 Nagoya, Japan
@article{10_4064_ap91_2_12,
     author = {Takeo Ohsawa},
     title = {${\overline{\partial }}$-cohomology and geometry of the boundary of pseudoconvex domains},
     journal = {Annales Polonici Mathematici},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {91},
     number = {2-3},
     year = {2007},
     doi = {10.4064/ap91-2-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-12/}
}
TY  - JOUR
AU  - Takeo Ohsawa
TI  - ${\overline{\partial }}$-cohomology and geometry of the boundary of pseudoconvex domains
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 249
EP  - 262
VL  - 91
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-12/
DO  - 10.4064/ap91-2-12
LA  - en
ID  - 10_4064_ap91_2_12
ER  - 
%0 Journal Article
%A Takeo Ohsawa
%T ${\overline{\partial }}$-cohomology and geometry of the boundary of pseudoconvex domains
%J Annales Polonici Mathematici
%D 2007
%P 249-262
%V 91
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-12/
%R 10.4064/ap91-2-12
%G en
%F 10_4064_ap91_2_12
Takeo Ohsawa. ${\overline{\partial }}$-cohomology and geometry of the boundary of pseudoconvex domains. Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 249-262. doi : 10.4064/ap91-2-12. http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-12/

Cité par Sources :