Siciak–Zahariuta extremal functions and polynomial hulls
Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 235-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We use our disc formula for the Siciak–Zahariuta extremal function to characterize the polynomial hull of a connected compact subset of complex affine space in terms of analytic discs.
DOI : 10.4064/ap91-2-10
Keywords: disc formula siciak zahariuta extremal function characterize polynomial hull connected compact subset complex affine space terms analytic discs

Finnur Lárusson 1 ; Ragnar Sigurdsson 2

1 School of Mathematical Sciences University of Adelaide Adelaide SA 5005, Australia
2 Science Institute University of Iceland Dunhaga 3, IS-107 Reykjavík, Iceland
@article{10_4064_ap91_2_10,
     author = {Finnur L\'arusson and Ragnar Sigurdsson},
     title = {Siciak{\textendash}Zahariuta extremal functions and polynomial hulls},
     journal = {Annales Polonici Mathematici},
     pages = {235--239},
     publisher = {mathdoc},
     volume = {91},
     number = {2-3},
     year = {2007},
     doi = {10.4064/ap91-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-10/}
}
TY  - JOUR
AU  - Finnur Lárusson
AU  - Ragnar Sigurdsson
TI  - Siciak–Zahariuta extremal functions and polynomial hulls
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 235
EP  - 239
VL  - 91
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-10/
DO  - 10.4064/ap91-2-10
LA  - en
ID  - 10_4064_ap91_2_10
ER  - 
%0 Journal Article
%A Finnur Lárusson
%A Ragnar Sigurdsson
%T Siciak–Zahariuta extremal functions and polynomial hulls
%J Annales Polonici Mathematici
%D 2007
%P 235-239
%V 91
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-10/
%R 10.4064/ap91-2-10
%G en
%F 10_4064_ap91_2_10
Finnur Lárusson; Ragnar Sigurdsson. Siciak–Zahariuta extremal functions and polynomial hulls. Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 235-239. doi : 10.4064/ap91-2-10. http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-10/

Cité par Sources :