Continuous pluriharmonic boundary values
Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 99-117
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $D_{j}$ be a bounded hyperconvex domain in $\mathbb{C}^{n_{j}}$ and
set $D=D_{1}\times\cdots\times D_{s}$, $j=1,\ldots,s$, $s\geq 3$.
Also let $\mathbb{G}_n$ be the symmetrized polydisc in $\mathbb{C}^{n}$, $n\geq
3$. We characterize those real-valued continuous
functions defined on the boundary of $D$ or $\mathbb{G}_n$ which can be
extended to the inside to a pluriharmonic function. As an
application a complete characterization of the compliant functions
is obtained.
Keywords:
bounded hyperconvex domain mathbb set times cdots times ldots geq mathbb symmetrized polydisc mathbb geq characterize those real valued continuous functions defined boundary mathbb which extended inside pluriharmonic function application complete characterization compliant functions obtained
Affiliations des auteurs :
Per Åhag 1 ; Rafał Czyż 2
@article{10_4064_ap91_2_1,
author = {Per \r{A}hag and Rafa{\l} Czy\.z},
title = {Continuous pluriharmonic boundary values},
journal = {Annales Polonici Mathematici},
pages = {99--117},
publisher = {mathdoc},
volume = {91},
number = {2-3},
year = {2007},
doi = {10.4064/ap91-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-2-1/}
}
Per Åhag; Rafał Czyż. Continuous pluriharmonic boundary values. Annales Polonici Mathematici, Tome 91 (2007) no. 2-3, pp. 99-117. doi: 10.4064/ap91-2-1
Cité par Sources :