Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Le Mau Hai 1 ; Nguyen Van Khue 1 ; Pham Hoang Hiep 1
@article{10_4064_ap91_1_3, author = {Le Mau Hai and Nguyen Van Khue and Pham Hoang Hiep}, title = {$\omega$-pluripolar sets and subextension of $\omega$-plurisubharmonic functions on compact {K\"ahler} manifolds}, journal = {Annales Polonici Mathematici}, pages = {25--41}, publisher = {mathdoc}, volume = {91}, number = {1}, year = {2007}, doi = {10.4064/ap91-1-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-3/} }
TY - JOUR AU - Le Mau Hai AU - Nguyen Van Khue AU - Pham Hoang Hiep TI - $\omega$-pluripolar sets and subextension of $\omega$-plurisubharmonic functions on compact Kähler manifolds JO - Annales Polonici Mathematici PY - 2007 SP - 25 EP - 41 VL - 91 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-3/ DO - 10.4064/ap91-1-3 LA - en ID - 10_4064_ap91_1_3 ER -
%0 Journal Article %A Le Mau Hai %A Nguyen Van Khue %A Pham Hoang Hiep %T $\omega$-pluripolar sets and subextension of $\omega$-plurisubharmonic functions on compact Kähler manifolds %J Annales Polonici Mathematici %D 2007 %P 25-41 %V 91 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-3/ %R 10.4064/ap91-1-3 %G en %F 10_4064_ap91_1_3
Le Mau Hai; Nguyen Van Khue; Pham Hoang Hiep. $\omega$-pluripolar sets and subextension of $\omega$-plurisubharmonic functions on compact Kähler manifolds. Annales Polonici Mathematici, Tome 91 (2007) no. 1, pp. 25-41. doi : 10.4064/ap91-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-3/
Cité par Sources :