Growth of coefficients of universal Dirichlet series
Annales Polonici Mathematici, Tome 91 (2007) no. 1, pp. 11-23.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study universal Dirichlet series with respect to overconvergence, which are absolutely convergent in the right half of the complex plane. In particular we obtain estimates on the growth of their coefficients. We can then compare several classes of universal Dirichlet series.
DOI : 10.4064/ap91-1-2
Keywords: study universal dirichlet series respect overconvergence which absolutely convergent right half complex plane particular obtain estimates growth their coefficients compare several classes universal dirichlet series

O. Demanze 1 ; A. Mouze 2

1
2 Laboratoire de Mathámatiques, UMR 8524 École Centrale de Lille Citá Scientifique 59650 Villeneuve d'Ascq, France
@article{10_4064_ap91_1_2,
     author = {O. Demanze and A. Mouze},
     title = {Growth of coefficients of universal {Dirichlet} series},
     journal = {Annales Polonici Mathematici},
     pages = {11--23},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {2007},
     doi = {10.4064/ap91-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-2/}
}
TY  - JOUR
AU  - O. Demanze
AU  - A. Mouze
TI  - Growth of coefficients of universal Dirichlet series
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 11
EP  - 23
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-2/
DO  - 10.4064/ap91-1-2
LA  - en
ID  - 10_4064_ap91_1_2
ER  - 
%0 Journal Article
%A O. Demanze
%A A. Mouze
%T Growth of coefficients of universal Dirichlet series
%J Annales Polonici Mathematici
%D 2007
%P 11-23
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-2/
%R 10.4064/ap91-1-2
%G en
%F 10_4064_ap91_1_2
O. Demanze; A. Mouze. Growth of coefficients of universal Dirichlet series. Annales Polonici Mathematici, Tome 91 (2007) no. 1, pp. 11-23. doi : 10.4064/ap91-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ap91-1-2/

Cité par Sources :