Boundary cross theorem in dimension 1
Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 149-192
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X,\, Y$ be two complex manifolds of dimension $1$ which are countable at infinity,
let $D\subset X,$ $ G\subset Y$ be two open sets, let
$A$ (resp. $B$) be a subset of $\partial D$ (resp.
$\partial G$), and let $W$ be the $2$-fold cross $((D\cup A)\times B)\cup (A\times(B\cup G)).$
Suppose in addition that $D$ (resp. $G$) is
Jordan-curve-like on $A$ (resp. $B$) and that
$A$ and $B$ are of positive length.
We determine the “envelope of holomorphy”
$\widehat{W}$ of $W$ in the sense that any function locally bounded on $W,$
measurable on $A\times B,$ and separately
holomorphic
on $(A\times G) \cup (D\times B)$ “extends” to a function
holomorphic on the interior of $\widehat{W}.$
Keywords:
complex manifolds dimension which countable infinity subset subset sets resp subset partial resp partial fold cross cup times cup times cup suppose addition resp jordan curve like resp positive length determine envelope holomorphy widehat sense function locally bounded measurable times separately holomorphic times cup times extends function holomorphic interior widehat
Affiliations des auteurs :
Peter Pflug 1 ; Viêt-Anh Nguyên 2
@article{10_4064_ap90_2_5,
author = {Peter Pflug and Vi\^et-Anh Nguy\^en},
title = {Boundary cross theorem in dimension 1},
journal = {Annales Polonici Mathematici},
pages = {149--192},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {2007},
doi = {10.4064/ap90-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-5/}
}
Peter Pflug; Viêt-Anh Nguyên. Boundary cross theorem in dimension 1. Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 149-192. doi: 10.4064/ap90-2-5
Cité par Sources :