Invisible obstacles
Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 145-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called “invisible” in this case.
DOI : 10.4064/ap90-2-4
Mots-clés : proved choose control function arbitrarilly small subset boundary obstacle total radiation obstacle fixed direction incident plane wave fixed wave number small wishes obstacle called invisible

A. G. Ramm 1

1 Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ap90_2_4,
     author = {A. G. Ramm},
     title = {Invisible obstacles},
     journal = {Annales Polonici Mathematici},
     pages = {145--148},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2007},
     doi = {10.4064/ap90-2-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-4/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Invisible obstacles
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 145
EP  - 148
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-4/
DO  - 10.4064/ap90-2-4
LA  - fr
ID  - 10_4064_ap90_2_4
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Invisible obstacles
%J Annales Polonici Mathematici
%D 2007
%P 145-148
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-4/
%R 10.4064/ap90-2-4
%G fr
%F 10_4064_ap90_2_4
A. G. Ramm. Invisible obstacles. Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 145-148. doi : 10.4064/ap90-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-4/

Cité par Sources :