A Littlewood–Paley type inequality with applications to the elliptic Dirichlet problem
Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 105-130.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $L$ be a strictly elliptic second order operator on a bounded domain ${\mit \Omega } \subset {{\mathbb R}}^{n}$. Let $u$ be a solution to $Lu=\mathop {\rm div}\vec {f}$ in ${\mit \Omega } $, $u=0$ on $\partial {\mit \Omega } $. Sufficient conditions on two measures, $\mu $ and $\nu $ defined on ${\mit \Omega } $, are established which imply that the $L^{q}({\mit \Omega } ,d\mu )$ norm of $| \nabla u| $ is dominated by the $L^{p}({\mit \Omega } ,dv)$ norms of $\mathop {\rm div}\vec {f}$ and $| \vec {f}| $. If we replace $| \nabla u| $ by a local Hölder norm of $u$, the conditions on $\mu $ and $\nu $ can be significantly weaker.
DOI : 10.4064/ap90-2-2
Keywords: strictly elliptic second order operator bounded domain mit omega subset mathbb solution mathop div vec mit omega partial mit omega sufficient conditions measures defined mit omega established which imply mit omega norm nabla dominated mit omega norms mathop div vec vec replace nabla local lder norm conditions significantly weaker

Caroline Sweezy 1

1 Department of Mathematical Sciences New Mexico State University Box 30001 3MB Las Cruces, NM 88003-8001, U.S.A.
@article{10_4064_ap90_2_2,
     author = {Caroline Sweezy},
     title = {A {Littlewood{\textendash}Paley} type inequality with
  applications to the elliptic {Dirichlet} problem},
     journal = {Annales Polonici Mathematici},
     pages = {105--130},
     publisher = {mathdoc},
     volume = {90},
     number = {2},
     year = {2007},
     doi = {10.4064/ap90-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/}
}
TY  - JOUR
AU  - Caroline Sweezy
TI  - A Littlewood–Paley type inequality with
  applications to the elliptic Dirichlet problem
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 105
EP  - 130
VL  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/
DO  - 10.4064/ap90-2-2
LA  - en
ID  - 10_4064_ap90_2_2
ER  - 
%0 Journal Article
%A Caroline Sweezy
%T A Littlewood–Paley type inequality with
  applications to the elliptic Dirichlet problem
%J Annales Polonici Mathematici
%D 2007
%P 105-130
%V 90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/
%R 10.4064/ap90-2-2
%G en
%F 10_4064_ap90_2_2
Caroline Sweezy. A Littlewood–Paley type inequality with
  applications to the elliptic Dirichlet problem. Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 105-130. doi : 10.4064/ap90-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/

Cité par Sources :