A Littlewood–Paley type inequality with
applications to the elliptic Dirichlet problem
Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 105-130
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $L$ be a strictly elliptic second order operator on a bounded domain ${\mit \Omega } \subset {{\mathbb R}}^{n}$. Let $u$ be a solution to $Lu=\mathop {\rm div}\vec {f}$ in ${\mit \Omega } $, $u=0$ on $\partial {\mit \Omega } $. Sufficient conditions on two measures, $\mu $ and $\nu $ defined on ${\mit \Omega } $, are established which imply that the $L^{q}({\mit \Omega } ,d\mu )$ norm of $| \nabla u| $ is dominated by the $L^{p}({\mit \Omega } ,dv)$ norms of $\mathop {\rm div}\vec {f}$ and $| \vec {f}| $. If we replace $| \nabla u| $ by a local Hölder norm of $u$, the conditions on $\mu $ and $\nu $ can be significantly weaker.
Keywords:
strictly elliptic second order operator bounded domain mit omega subset mathbb solution mathop div vec mit omega partial mit omega sufficient conditions measures defined mit omega established which imply mit omega norm nabla dominated mit omega norms mathop div vec vec replace nabla local lder norm conditions significantly weaker
Affiliations des auteurs :
Caroline Sweezy 1
@article{10_4064_ap90_2_2,
author = {Caroline Sweezy},
title = {A {Littlewood{\textendash}Paley} type inequality with
applications to the elliptic {Dirichlet} problem},
journal = {Annales Polonici Mathematici},
pages = {105--130},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {2007},
doi = {10.4064/ap90-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/}
}
TY - JOUR AU - Caroline Sweezy TI - A Littlewood–Paley type inequality with applications to the elliptic Dirichlet problem JO - Annales Polonici Mathematici PY - 2007 SP - 105 EP - 130 VL - 90 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/ DO - 10.4064/ap90-2-2 LA - en ID - 10_4064_ap90_2_2 ER -
%0 Journal Article %A Caroline Sweezy %T A Littlewood–Paley type inequality with applications to the elliptic Dirichlet problem %J Annales Polonici Mathematici %D 2007 %P 105-130 %V 90 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-2/ %R 10.4064/ap90-2-2 %G en %F 10_4064_ap90_2_2
Caroline Sweezy. A Littlewood–Paley type inequality with applications to the elliptic Dirichlet problem. Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 105-130. doi: 10.4064/ap90-2-2
Cité par Sources :