Hodge type decomposition
Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 99-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the space ${\mit\Lambda}^p$ of polynomial $p$-forms in
$\mathbb{R}^n$ we introduce
some special inner product.
Let $\mathbf{H}^p$
be the space of polynomial $p$-forms which are both closed and co-closed.
We prove in a purely algebraic way that ${\mit\Lambda}^p$ splits as the direct sum
$d^\star({\mit\Lambda}^{p+1})\oplus \delta^\star({\mit\Lambda}^{p-1})
\oplus \mathbf{H}^p$, where $d^\star$ (resp. $\delta^\star$)
denotes the adjoint operator to $d$ (resp.
$\delta$) with respect to that inner product.
Keywords:
space mit lambda polynomial p forms mathbb introduce special inner product mathbf space polynomial p forms which closed co closed prove purely algebraic mit lambda splits direct sum star mit lambda oplus delta star mit lambda p oplus mathbf where star resp delta star denotes adjoint operator resp delta respect inner product
Affiliations des auteurs :
Wojciech Koz/lowski 1
@article{10_4064_ap90_2_1,
author = {Wojciech Koz/lowski},
title = {Hodge type decomposition},
journal = {Annales Polonici Mathematici},
pages = {99--104},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {2007},
doi = {10.4064/ap90-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-2-1/}
}
Wojciech Koz/lowski. Hodge type decomposition. Annales Polonici Mathematici, Tome 90 (2007) no. 2, pp. 99-104. doi: 10.4064/ap90-2-1
Cité par Sources :