A Green's function for $\theta$-incomplete polynomials
Annales Polonici Mathematici, Tome 90 (2007) no. 1, pp. 21-35
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be any subset of $ \mathbb C^N $. We define a pluricomplex Green's
function $V_{K,\theta} $ for $ \theta $-incomplete polynomials. We
establish properties of $V_{K,\theta} $ analogous to those of the weighted
pluricomplex Green's function. When $K$ is a regular compact subset of $
\mathbb R^N $, we show that every continuous function that can be approximated
uniformly on $K$ by $\theta$-incomplete polynomials, must vanish on $ K
\setminus {\rm supp}\,(dd^{c} V_{K,\theta})^N $. We prove a version of Siciak's
theorem and a comparison theorem for $ \theta $-incomplete polynomials.
We compute $ {\rm supp}\,(dd^{c} V_{K,\theta})^N $ when $K$ is a compact section.
Keywords:
subset mathbb define pluricomplex greens function theta theta incomplete polynomials establish properties theta analogous those weighted pluricomplex greens function regular compact subset mathbb every continuous function approximated uniformly theta incomplete polynomials vanish setminus supp theta prove version siciaks theorem comparison theorem theta incomplete polynomials compute supp theta compact section
Affiliations des auteurs :
Joe Callaghan 1
@article{10_4064_ap90_1_2,
author = {Joe Callaghan},
title = {A {Green's} function for $\theta$-incomplete polynomials},
journal = {Annales Polonici Mathematici},
pages = {21--35},
publisher = {mathdoc},
volume = {90},
number = {1},
year = {2007},
doi = {10.4064/ap90-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-2/}
}
Joe Callaghan. A Green's function for $\theta$-incomplete polynomials. Annales Polonici Mathematici, Tome 90 (2007) no. 1, pp. 21-35. doi: 10.4064/ap90-1-2
Cité par Sources :