A Green's function for $\theta$-incomplete polynomials
Annales Polonici Mathematici, Tome 90 (2007) no. 1, pp. 21-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be any subset of $ \mathbb C^N $. We define a pluricomplex Green's function $V_{K,\theta} $ for $ \theta $-incomplete polynomials. We establish properties of $V_{K,\theta} $ analogous to those of the weighted pluricomplex Green's function. When $K$ is a regular compact subset of $ \mathbb R^N $, we show that every continuous function that can be approximated uniformly on $K$ by $\theta$-incomplete polynomials, must vanish on $ K \setminus {\rm supp}\,(dd^{c} V_{K,\theta})^N $. We prove a version of Siciak's theorem and a comparison theorem for $ \theta $-incomplete polynomials. We compute $ {\rm supp}\,(dd^{c} V_{K,\theta})^N $ when $K$ is a compact section.
DOI : 10.4064/ap90-1-2
Keywords: subset mathbb define pluricomplex greens function theta theta incomplete polynomials establish properties theta analogous those weighted pluricomplex greens function regular compact subset mathbb every continuous function approximated uniformly theta incomplete polynomials vanish setminus supp theta prove version siciaks theorem comparison theorem theta incomplete polynomials compute supp theta compact section

Joe Callaghan 1

1 Department of Mathematics University of Toronto Toronto, Ontario M5S 2E4, Canada
@article{10_4064_ap90_1_2,
     author = {Joe Callaghan},
     title = {A {Green's} function for $\theta$-incomplete polynomials},
     journal = {Annales Polonici Mathematici},
     pages = {21--35},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2007},
     doi = {10.4064/ap90-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-2/}
}
TY  - JOUR
AU  - Joe Callaghan
TI  - A Green's function for $\theta$-incomplete polynomials
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 21
EP  - 35
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-2/
DO  - 10.4064/ap90-1-2
LA  - en
ID  - 10_4064_ap90_1_2
ER  - 
%0 Journal Article
%A Joe Callaghan
%T A Green's function for $\theta$-incomplete polynomials
%J Annales Polonici Mathematici
%D 2007
%P 21-35
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-2/
%R 10.4064/ap90-1-2
%G en
%F 10_4064_ap90_1_2
Joe Callaghan. A Green's function for $\theta$-incomplete polynomials. Annales Polonici Mathematici, Tome 90 (2007) no. 1, pp. 21-35. doi : 10.4064/ap90-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-2/

Cité par Sources :