Density of Morse functions on sets definable in o-minimal structures
Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 289-299.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a tameness property of sets definable in o-minimal structures by showing that Morse functions on a definable closed set form a dense and open subset in the space of definable $C^p$ functions endowed with the Whitney topology.
DOI : 10.4064/ap89-3-5
Keywords: present tameness property sets definable o minimal structures showing morse functions definable closed set form dense subset space definable functions endowed whitney topology

Ta Lê Loi 1

1 Department of Mathematics University of Dalat Dalat, Vietnam
@article{10_4064_ap89_3_5,
     author = {Ta L\^e  Loi},
     title = {Density of {Morse} functions
 on sets definable in o-minimal structures},
     journal = {Annales Polonici Mathematici},
     pages = {289--299},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2006},
     doi = {10.4064/ap89-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-5/}
}
TY  - JOUR
AU  - Ta Lê  Loi
TI  - Density of Morse functions
 on sets definable in o-minimal structures
JO  - Annales Polonici Mathematici
PY  - 2006
SP  - 289
EP  - 299
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-5/
DO  - 10.4064/ap89-3-5
LA  - en
ID  - 10_4064_ap89_3_5
ER  - 
%0 Journal Article
%A Ta Lê  Loi
%T Density of Morse functions
 on sets definable in o-minimal structures
%J Annales Polonici Mathematici
%D 2006
%P 289-299
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-5/
%R 10.4064/ap89-3-5
%G en
%F 10_4064_ap89_3_5
Ta Lê  Loi. Density of Morse functions
 on sets definable in o-minimal structures. Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 289-299. doi : 10.4064/ap89-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-5/

Cité par Sources :