Density of Morse functions
on sets definable in o-minimal structures
Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 289-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present a tameness property of sets definable in o-minimal structures by showing that Morse functions on a definable closed set form a dense and open subset in the space of definable $C^p$ functions endowed with the Whitney topology.
Keywords:
present tameness property sets definable o minimal structures showing morse functions definable closed set form dense subset space definable functions endowed whitney topology
Affiliations des auteurs :
Ta Lê Loi 1
@article{10_4064_ap89_3_5,
author = {Ta L\^e Loi},
title = {Density of {Morse} functions
on sets definable in o-minimal structures},
journal = {Annales Polonici Mathematici},
pages = {289--299},
publisher = {mathdoc},
volume = {89},
number = {3},
year = {2006},
doi = {10.4064/ap89-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-5/}
}
TY - JOUR AU - Ta Lê Loi TI - Density of Morse functions on sets definable in o-minimal structures JO - Annales Polonici Mathematici PY - 2006 SP - 289 EP - 299 VL - 89 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-5/ DO - 10.4064/ap89-3-5 LA - en ID - 10_4064_ap89_3_5 ER -
Ta Lê Loi. Density of Morse functions on sets definable in o-minimal structures. Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 289-299. doi: 10.4064/ap89-3-5
Cité par Sources :