On uniqueness for nonlinear differential polynomials sharing the same 1-point
Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 259-272.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the uniqueness of meromorphic functions when two nonlinear differential polynomials generated by two meromorphic functions share the same $1$-points. Our results improve results of Fang–Fang and Lin–Yi and supplement a recent result of Lahiri–Pal.
DOI : 10.4064/ap89-3-3
Keywords: study uniqueness meromorphic functions nonlinear differential polynomials generated meromorphic functions share points results improve results fang fang lin supplement recent result lahiri pal

Abhijit Banerjee 1

1 Department of Mathematics Kalyani Government Engineering College West Bengal 741235, India
@article{10_4064_ap89_3_3,
     author = {Abhijit Banerjee},
     title = {On uniqueness for nonlinear differential polynomials
 sharing the same 1-point},
     journal = {Annales Polonici Mathematici},
     pages = {259--272},
     publisher = {mathdoc},
     volume = {89},
     number = {3},
     year = {2006},
     doi = {10.4064/ap89-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-3/}
}
TY  - JOUR
AU  - Abhijit Banerjee
TI  - On uniqueness for nonlinear differential polynomials
 sharing the same 1-point
JO  - Annales Polonici Mathematici
PY  - 2006
SP  - 259
EP  - 272
VL  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-3/
DO  - 10.4064/ap89-3-3
LA  - en
ID  - 10_4064_ap89_3_3
ER  - 
%0 Journal Article
%A Abhijit Banerjee
%T On uniqueness for nonlinear differential polynomials
 sharing the same 1-point
%J Annales Polonici Mathematici
%D 2006
%P 259-272
%V 89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-3/
%R 10.4064/ap89-3-3
%G en
%F 10_4064_ap89_3_3
Abhijit Banerjee. On uniqueness for nonlinear differential polynomials
 sharing the same 1-point. Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 259-272. doi : 10.4064/ap89-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-3/

Cité par Sources :