1Laboratoire de Mathématiques de Lens EA 2462 Fédération CNRS Nord-Pas-de-Calais FR 2956 Faculté des Sciences Jean Perrin Université d'Artois Rue Jean Souvraz S.P. 18 62 307 Lens Cedex, France 2Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 203-246
%
We study the cohomology properties of the singular
foliation $\cal F$ determined by an action ${\mit\Phi} \colon G \times M\to
M$ where the abelian Lie group $G$ preserves a riemannian metric
on the compact manifold $M$. More precisely, we prove that the
basic intersection cohomology $\mathbb H^{*}_{\overline{p}}{(M/\mathcal F)}$ is
finite-dimensional and satisfies the Poincaré duality.
This duality includes two well known situations:$\bullet$ Poincaré duality for basic cohomology (the
action ${\mit\Phi}$ is almost free). $\bullet$ Poincaré duality
for intersection cohomology (the group $G$ is compact and connected).
Keywords:
study cohomology properties singular foliation cal determined action mit phi colon times where abelian lie group preserves riemannian metric compact manifold precisely prove basic intersection cohomology mathbb * overline mathcal finite dimensional satisfies poincar duality duality includes known situations bullet poincar duality basic cohomology action mit phi almost bullet poincar duality intersection cohomology group compact connected
Affiliations des auteurs :
Martintxo Saralegi-Aranguren 
1
;
Robert Wolak 
2
1
Laboratoire de Mathématiques de Lens EA 2462 Fédération CNRS Nord-Pas-de-Calais FR 2956 Faculté des Sciences Jean Perrin Université d'Artois Rue Jean Souvraz S.P. 18 62 307 Lens Cedex, France
2
Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ap89_3_1,
author = {Martintxo Saralegi-Aranguren and Robert Wolak},
title = {The {BIC} of a singular foliation
defined by an abelian group of isometries},
journal = {Annales Polonici Mathematici},
pages = {203--246},
year = {2006},
volume = {89},
number = {3},
doi = {10.4064/ap89-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-1/}
}
TY - JOUR
AU - Martintxo Saralegi-Aranguren
AU - Robert Wolak
TI - The BIC of a singular foliation
defined by an abelian group of isometries
JO - Annales Polonici Mathematici
PY - 2006
SP - 203
EP - 246
VL - 89
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-1/
DO - 10.4064/ap89-3-1
LA - en
ID - 10_4064_ap89_3_1
ER -
%0 Journal Article
%A Martintxo Saralegi-Aranguren
%A Robert Wolak
%T The BIC of a singular foliation
defined by an abelian group of isometries
%J Annales Polonici Mathematici
%D 2006
%P 203-246
%V 89
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-3-1/
%R 10.4064/ap89-3-1
%G en
%F 10_4064_ap89_3_1
Martintxo Saralegi-Aranguren; Robert Wolak. The BIC of a singular foliation
defined by an abelian group of isometries. Annales Polonici Mathematici, Tome 89 (2006) no. 3, pp. 203-246. doi: 10.4064/ap89-3-1