On a $k$th-order differential equation
Annales Polonici Mathematici, Tome 89 (2006) no. 1, pp. 53-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a theorem on the growth of a solution of a $k$th-order linear differential equation. From this we obtain some uniqueness theorems. Our results improve several known results. Some examples show that the results are best possible.
DOI : 10.4064/ap89-1-4
Keywords: prove theorem growth solution kth order linear differential equation obtain uniqueness theorems results improve several known results examples results best possible

Xiao-Min Li 1 ; Cun-Chen Gao 1

1 Department of Mathematics Ocean University of China Qingdao, Shandong 266071, People's Republic of China
@article{10_4064_ap89_1_4,
     author = {Xiao-Min Li and Cun-Chen Gao},
     title = {On a $k$th-order differential equation},
     journal = {Annales Polonici Mathematici},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2006},
     doi = {10.4064/ap89-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/}
}
TY  - JOUR
AU  - Xiao-Min Li
AU  - Cun-Chen Gao
TI  - On a $k$th-order differential equation
JO  - Annales Polonici Mathematici
PY  - 2006
SP  - 53
EP  - 63
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/
DO  - 10.4064/ap89-1-4
LA  - en
ID  - 10_4064_ap89_1_4
ER  - 
%0 Journal Article
%A Xiao-Min Li
%A Cun-Chen Gao
%T On a $k$th-order differential equation
%J Annales Polonici Mathematici
%D 2006
%P 53-63
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/
%R 10.4064/ap89-1-4
%G en
%F 10_4064_ap89_1_4
Xiao-Min Li; Cun-Chen Gao. On a $k$th-order differential equation. Annales Polonici Mathematici, Tome 89 (2006) no. 1, pp. 53-63. doi : 10.4064/ap89-1-4. http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/

Cité par Sources :