We prove a theorem on the growth of a solution of a $k$th-order linear differential equation. From this we obtain some uniqueness theorems. Our results improve several known results. Some examples show that the results are best possible.
Keywords:
prove theorem growth solution kth order linear differential equation obtain uniqueness theorems results improve several known results examples results best possible
Affiliations des auteurs :
Xiao-Min Li 
1
;
Cun-Chen Gao 
1
1
Department of Mathematics Ocean University of China Qingdao, Shandong 266071, People's Republic of China
@article{10_4064_ap89_1_4,
author = {Xiao-Min Li and Cun-Chen Gao},
title = {On a $k$th-order differential equation},
journal = {Annales Polonici Mathematici},
pages = {53--63},
year = {2006},
volume = {89},
number = {1},
doi = {10.4064/ap89-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/}
}
TY - JOUR
AU - Xiao-Min Li
AU - Cun-Chen Gao
TI - On a $k$th-order differential equation
JO - Annales Polonici Mathematici
PY - 2006
SP - 53
EP - 63
VL - 89
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/
DO - 10.4064/ap89-1-4
LA - en
ID - 10_4064_ap89_1_4
ER -
%0 Journal Article
%A Xiao-Min Li
%A Cun-Chen Gao
%T On a $k$th-order differential equation
%J Annales Polonici Mathematici
%D 2006
%P 53-63
%V 89
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-4/
%R 10.4064/ap89-1-4
%G en
%F 10_4064_ap89_1_4
Xiao-Min Li; Cun-Chen Gao. On a $k$th-order differential equation. Annales Polonici Mathematici, Tome 89 (2006) no. 1, pp. 53-63. doi: 10.4064/ap89-1-4