On the variational calculus in fibered-fibered manifolds
Annales Polonici Mathematici, Tome 89 (2006) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we extend the variational calculus to fibered-fibered manifolds. Fibered-fibered manifolds are surjective fibered submersions $\pi:Y\to X$ between fibered manifolds. For natural numbers $s\geq r\leq q$ with $r\geq 1$ we define $(r,s,q)$th order Lagrangians on fibered-fibered manifolds $\pi:Y\to X$ as base-preserving morphisms $\lambda:J^{r,s,q}Y\to\bigwedge^{{\rm dim}\, X}T^*X$. Then similarly to the fibered manifold case we define critical fibered sections of~$Y$. Setting $p=\max(q,s)$ we prove that there exists a canonical “Euler” morphism $\mathcal E(\lambda):J^{r+s,2s,r+p}Y\to \mathcal V^*Y\otimes \bigwedge^{{\rm dim}\,X}T^*X$ of $\lambda$ satisfying a decomposition property similar to the one in the fibered manifold case, and we deduce that critical fibered sections $\sigma$ are exactly the solutions of the “Euler–Lagrange” equations ${\mathcal E}(\lambda)\circ j^{r+s,2s,r+p}\sigma=0$. Next we study the naturality of the “Euler” morphism. We prove that any natural operator of the “Euler” morphism type is $c\mathcal E(\lambda)$, $c\in\mathbb R$, provided $\dim X\geq 2$.
DOI : 10.4064/ap89-1-1
Keywords: paper extend variational calculus fibered fibered manifolds fibered fibered manifolds surjective fibered submersions between fibered manifolds natural numbers geq leq geq define order lagrangians fibered fibered manifolds base preserving morphisms lambda y bigwedge dim *x similarly fibered manifold define critical fibered sections setting max prove there exists canonical euler morphism mathcal lambda y mathcal *y otimes bigwedge dim *x lambda satisfying decomposition property similar the fibered manifold deduce critical fibered sections sigma exactly solutions euler lagrange equations mathcal lambda circ sigma study naturality euler morphism prove natural operator euler morphism type mathcal lambda mathbb provided dim geq

W. M. Mikulski 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Krak/ow, Poland
@article{10_4064_ap89_1_1,
     author = {W. M. Mikulski},
     title = {On the variational calculus in fibered-fibered manifolds},
     journal = {Annales Polonici Mathematici},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {2006},
     doi = {10.4064/ap89-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-1/}
}
TY  - JOUR
AU  - W. M. Mikulski
TI  - On the variational calculus in fibered-fibered manifolds
JO  - Annales Polonici Mathematici
PY  - 2006
SP  - 1
EP  - 12
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-1/
DO  - 10.4064/ap89-1-1
LA  - en
ID  - 10_4064_ap89_1_1
ER  - 
%0 Journal Article
%A W. M. Mikulski
%T On the variational calculus in fibered-fibered manifolds
%J Annales Polonici Mathematici
%D 2006
%P 1-12
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-1/
%R 10.4064/ap89-1-1
%G en
%F 10_4064_ap89_1_1
W. M. Mikulski. On the variational calculus in fibered-fibered manifolds. Annales Polonici Mathematici, Tome 89 (2006) no. 1, pp. 1-12. doi : 10.4064/ap89-1-1. http://geodesic.mathdoc.fr/articles/10.4064/ap89-1-1/

Cité par Sources :