On continuous solutions to linear hyperbolic systems
Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 273-281
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the conditions under which the Cauchy problem for a linear hyperbolic system of partial differential equations of the first order in two independent variables has a unique continuous solution (not necessarily Lipschitz continuous). In addition to obvious continuity assumptions on coefficients and initial data, the sufficient conditions are the bounded variation of the left eigenvectors along the characteristic curves.
Keywords:
study conditions under which cauchy problem linear hyperbolic system partial differential equations first order independent variables has unique continuous solution necessarily lipschitz continuous addition obvious continuity assumptions coefficients initial sufficient conditions bounded variation eigenvectors along characteristic curves
Affiliations des auteurs :
Ma/lgorzata Zdanowicz 1 ; Zbigniew Peradzy/nski 2
@article{10_4064_ap86_3_5,
author = {Ma/lgorzata Zdanowicz and Zbigniew Peradzy/nski},
title = {On continuous solutions to linear hyperbolic systems},
journal = {Annales Polonici Mathematici},
pages = {273--281},
year = {2005},
volume = {86},
number = {3},
doi = {10.4064/ap86-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-5/}
}
TY - JOUR AU - Ma/lgorzata Zdanowicz AU - Zbigniew Peradzy/nski TI - On continuous solutions to linear hyperbolic systems JO - Annales Polonici Mathematici PY - 2005 SP - 273 EP - 281 VL - 86 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-5/ DO - 10.4064/ap86-3-5 LA - en ID - 10_4064_ap86_3_5 ER -
Ma/lgorzata Zdanowicz; Zbigniew Peradzy/nski. On continuous solutions to linear hyperbolic systems. Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 273-281. doi: 10.4064/ap86-3-5
Cité par Sources :